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Abstract
This paper presents a simple pair of first-order theories that are not definitionally
(nor Morita) equivalent, yet are mutually conservatively translatable and mutually
‘surjectively’ translatable. We use these results to clarify the overall geography of
standards of equivalence and to show that the structural commitments that theories
make behave in a more subtle manner than has been recognized.

Keywords Equivalence · Structure · Translation · Cantor–Bernstein ·
co-Cantor–Bernstein

1 Introduction

There is a long tradition in philosophy of comparing theories in terms of their ontolog-
ical commitments. More recent literature has started to compare them in terms of their
structural commitments too. The most famous case of structural comparison comes
from the history of classical spacetime theories. It is standard to claim that the Galilean
theory of spacetime posits less structure than the Newtonian theory of spacetime. The
Newtonian theory comes equipped with the structure required to single out a preferred
inertial frame as the rest frame, while the Galilean theory does not.1

1 See (Geroch, 1978), (Friedman, 1983), (Earman, 1989), (Maudlin, 2012), and Barrett (2015b) for
discussion.
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We can appeal to this kind of structural comparison between theories to inform
our judgments about equivalence of theories (North, 2009; Barrett, 2019).2 If two
theories disagree in terms of their structural commitments, then we can infer that they
are inequivalent. This is a natural thought. If two theories posit different structure—
like the Galilean and Newtonian theories of spacetime do—then they cannot ‘have
the same content’ or ‘say the same thing about the world’. It is uncontroversial that
equivalent theories must agree in terms of their structural commitments. But there
are some further natural principles relating structure and equivalence that are not as
obvious. In this paper we will consider the following two.

Principle 1. If T posits all of the structure of T ′ and T ′ posits all of the structure of
T , then T and T ′ are equivalent.

Principle 2. If T can be embedded in T ′ and T ′ can be embedded in T , then T and
T ′ are equivalent.

Principle 1 captures a natural idea that one might have about structure and equiv-
alence. If one theory posits all of the structure of the other and the other posits all
of the structure of the one, then one might expect them to posit the same structure
and to thereby be equivalent. This kind of idea is widespread, especially in the recent
literature on structure and equivalence. It has been put nicely by Dewar (2021, p. 6),
who suggests the following ‘slogan’ about structure and equivalence: “for two repre-
sentations to be equivalent is for them to posit the same structure, and the structure
of a representation is that which it has in common with equivalent representations”.
North (2009, p. 66–7) comes close to endorsing this same idea when she says that “[i]t
seems pretty clear why modern physics is so interested in structure. Structure consists
in just the kind of things we take to be candidates for objective features of the world,
for features of reality. […] Reality has to do with structure.” If so, then it is natural
to think that two theories that posit the same structure describe the world in precisely
the same manner and will thereby be equivalent.

The idea behind Principle 1 also comes up in debates about structural realism.
Many structural realists think that the content of a theory is exhausted by its ‘structural
content’. If so, then two theories that posit the same structure should be equivalent. For
example, consider the famous idea that the structural content of a theory is captured by
its Ramsey sentence. Many of the problems with this proposal reduce to the following
core issue. If one identifies the structural content of a theory with its Ramsey sentence,
then one is forced to adopt an unreasonable standard of theoretical equivalence (Dewar,
2019); ‘having the sameRamsey sentence’ is not a satisfactory criterion of equivalence.
The idea lurking behind the scenes here is close to Principle 1. Theories that posit the
same structure—which, on this structural realist proposal, amounts to ‘having the same
Ramsey sentence’ in some precise sense—should be considered equivalent.3

On the face of it, Principle 2 is perhaps more intuitive than Principle 1. Suppose that
one theory can be ‘embedded’ in the other and the other can be ‘embedded’ in the one.
For many mathematical objects (like, for example, sets) this mutual embeddability

2 See (Weatherall, 2019) for a review of the recent debate on equivalence of theories.
3 There is, of course, a small gap between Principle 1 and this idea; it may be that T posits all the structure
of T ′ and vice versa but T and T ′ do not posit the same structure. It is, in a sense, exactly this gap that the
example in this paper will exploit.
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would imply that the two objects are ‘the same’ in the sense that they are isomorphic.
One would expect two mutually embeddable theories to posit the same structure and
to be equivalent. We will argue here, however, that neither Principle 1 nor Principle
2 is true. For reasons that we will discuss below, it is natural to call Principle 2 the
‘Cantor–Bernstein property’ of theories and Principle 1 the ‘co-Cantor–Bernstein’
property of theories.

The aim of this paper is to present a simple example that demonstrates that first-
order theories lack both the Cantor–Bernstein and co-Cantor–Bernstein properties.
These two results are philosophically significant in their own right, but we will use
them to draw out two further philosophical payoffs that relate to recent discussions of
structure and equivalence. First, these results allow us clarify the overall geography of
standards of equivalence. And second, they show that the structural commitments that
theories make behave in a more subtle manner than has been recognized. In particular,
there is a sense in which, contrary to the way that philosophers often speak, structure
is not the kind of thing that can be genuinely ‘counted’.4

2 Two theories

Consider the following two theories.5

The theory T1. T1 is formulated in the signature �1 = {p0, p1, p2, . . .} where each
of the pi is a unary predicate symbol. We define the theory as follows:

T1 = {∃=1x(x = x)}

T1 says that there is exactly one thing, but it is silent on whether or not
that thing is pi .

The theory T2. T2 is formulated in the signature �2 = {q0, q1, q2, . . .} where each of
the qi is a unary predicate symbol. We define the theory as follows:

T2 = {∃=1x(x = x),∀x(q0(x)
→ q1(x)),∀x(q0(x) → q2(x)), . . .}

T2 says that there is exactly one thing, and that if that thing is q0, then
it is qi for all of the other i too. One can think of the predicate q0 as a
kind of ‘light switch’ that turns on all of the other predicates qi .

4 There is a sense in which these results are not surprising. Principle 1 and 2 are strong sufficient conditions
on equivalence of theories, and moreover, the Cantor–Bernstein and co-Cantor–Bernstein properties fail for
many kinds of mathematical objects—indeed, possibly for more than they hold of—so one might expect
them to fail for theories too. The two payoffs about structure and equivalence, however, are surprising.
This indicates that, even if one is not surprised by the falsity of Principles 1 and 2, one may not have fully
realized the consequences that this has for recent debates about structure and equivalence.
5 For preliminaries on model theory the reader is encouraged to consult (Hodges, 2008). The apparatus and
terminology that we use will follow (Halvorson, 2019). For additional discussion of these two theories see
(Halvorson, 2012) and (Barrett & Halvorson, 2016b).
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Our first aim is to examine these theories and catalogue the relationships between
them. In particular, we will demonstrate the following five claims, which correspond
to the five theorems that we prove in Sects. 3 and 4.

1. T1 and T2 are not definitionally equivalent.
2. T1 and T2 are not Morita equivalent.
3. There are conservative translations F : T1 → T2 and G : T2 → T1.
4. There are essentially surjective translations H : T1 → T2 and K : T2 → T1.
5. There is no essentially surjective and conservative translation from T1 to T2, or

vice versa.

It is natural to separate these claims into two kinds. The first two claims are about
what kinds of extensions exist for T1 and T2 (i.e. they have no common definitional
nor Morita extension), while the last three are about what kinds of translations exist
between T1 and T2. After proving these claims, we will return to the general philo-
sophical issues mentioned above and discuss how these results demonstrate the falsity
of Principles 1 and 2.

3 Extension

Let � ⊂ �+ be signatures with p ∈ �+ − � an n-ary predicate symbol. Recall that
an explicit definition of p in terms of � is a �+-sentence of the form

∀x1 . . . ∀xn(p(x1, . . . xn) ↔ φ(x1, . . . , xn))

where φ(x1, . . . , xn) is a �-formula. A definitional extension of a �-theory T to the
signature �+ is a �+-theory

T+ = T ∪ {δs : s ∈ �+ − �},

such that for each predicate symbol s ∈ �+−�, the sentence δs is an explicit definition
of s in terms of �. One can also define new function and constant symbols, but for
our purposes this will not be important. There are two familiar facts about definitional
extensions that we need to mention.6 First, if T+ is a definitional extension of T , then
every model of T has a unique expansion that is a model of T+. When � ⊂ �+, a
�+-structure M+ is said to be an expansion of a�-structure M if M is obtained from
M+ by ‘forgetting about’ the interpretations of the symbols in �+ − �. And second,
a definitional extension T+ of T is also a conservative extension of T . Recall that
T+ is an extension of T if T � φ entails that T+ � φ, and that it is a conservative
extension if for any sentence φ in the signature of T , T+ � φ if and only if T � φ.

We say that two theories are definitionally equivalent if they have a ‘common
definitional extension’. More precisely, if T is a �-theory and T ′ is a �′-theory, T
and T ′ are definitionally equivalent if there is a definitional extension T+ of T to the
signature � ∪ �′ and a definitional extension T ′+ of T ′ to the signature � ∪ �′ such
that T+ and T ′+ are logically equivalent (i.e. they have the same class of models).

6 See (Hodges, 2008) for proof of these facts.
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We now have the following simple theorem.

Theorem 1 T1 and T2 are not definitionally equivalent.

Proof Suppose for contradiction that T is a common definitional extension of T1 and
T2. Since T defines each of the predicate symbols of T2, there is a �1-sentence φ such
that T � ∀yq0(y) ↔ φ. Recall that models of each of these three theories have one
element.

We begin by showing that the sentence φ has the following property.

(�) If ψ is a �1-sentence and T1 � ψ → φ, then either (i) T1 � ¬ψ or (ii)
T1 � φ → ψ .

So let ψ be a �1-sentence such that T1 � ψ → φ and suppose that T1 � ¬ψ . This
means that there is a model M of T1 such that M � ψ . By assumption this means
that M � φ too. Now consider the model M+ of T . Since M+ � φ, we know that
M+ � ∀yq0(y). So it must be the case that M+ � ∀yqi (y) for each i because T is an
extension of T2. Now we want to show that T1 � φ → ψ . So suppose N is a model
of T1 such that N � φ. Consider the model N+ of T . We know that N+ � φ, so
N+ � ∀yq0(y), which—since T is an extension of T2—implies that N+ � ∀yqi (y)
for each i . This means that N+|�2 and M+|�2 are isomorphic. Every model of T2
has a unique expansion that is a model of T , so this implies that N+ and M+ must be
isomorphic as �1 ∪�2-structures. That immediately implies that N+ � ψ , so N � ψ

too. This means that the sentence φ does indeed have property (�). But φ cannot have
this property. Consider the �1-sentence

φ ∧ ∀xpi (x)

where pi is a predicate symbol that does not occur in φ. We trivially see that T1 �
(φ ∧ ∀xpi (x)) → φ, but one can verify that neither (i) nor (ii) hold of φ ∧ ∀xpi (x).
This is a contradiction, so T1 and T2 are not definitionally equivalent. ��

It has recently been suggested that definitional equivalence is too strict a standard
of equivalence between theories, in the sense that it judges theories to be inequivalent
that we have good reason to consider equivalent. For example, Euclidean geometry
can be formulated with only a sort of points (Tarski, 1959), with only a sort of lines
(Schwabhäuser & Szczerba, 1975), or with both a sort of points and a sort of lines
(Hilbert, 1930).7 Since these formulations use different sort symbols, and we have so
far provided no way of defining new sort symbols, definitional equivalence does not
capture any sense in which they are equivalent. In order to address this shortcoming
of definitional equivalence, a more liberal standard of equivalence has been proposed.
It has been called “Morita equivalence” (by (Barrett & Halvorson, 2016b, 2017a, b))
and “generalized definitional equivalence” (by (Andréka et al., 2008)).8

7 See (Szczerba, 1977) and Schwabhäuser et al. (1983, Proposition 4.59, Proposition 4.89).
8 See also (Hudetz, 2017a, b) and (Tsementzis, 2015). Note that Morita equivalence does not collapse
into definitional equivalence in the single-sorted setting. There are single-sorted theories that are Morita
equivalent but not definitionally equivalent, like geometries with points and geometries with lines (Barrett
& Halvorson, 2017a). For more on the relationship between Morita equivalence and single-sorted theories,
see (Barrett & Halvorson, 2017b).
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The precise details of Morita equivalence are not important for our purposes
here, but the basic idea is simple. Morita equivalence allows one to define new sort
symbols—in addition to new predicate, function, and constant symbols—using some
basic construction rules. Two theories are then said to be Morita equivalent if they
have a ‘common Morita extension’, which is just like a common definitional exten-
sion except that it might define new sorts. One can show that geometry formulated
in terms of points is Morita equivalent to geometry formulated in terms of lines; one
uses the sort of lines to build the sort of points, and vice versa (Barrett & Halvorson,
2017a).

One might wonder whether our theories T1 and T2 are Morita equivalent. The fol-
lowing simple result has already been demonstrated. The proof proceeds in essentially
the same manner as the proof of Theorem 1. Barrett and Halvorson (2016b, Theorem
5.2) give the precise details.9

Theorem 2 T1 and T2 are not Morita equivalent.

4 Translation

Our next three claims are about the kinds of ‘translations’ that exist between these
theories. We need some basic preliminaries.

Let � and �′ be signatures. A reconstrual F of � into �′ is a map from the
predicates in the signature � to �′-formulas that takes an n-ary predicate symbol
p ∈ � to a �′-formula Fp(x1, . . . , xn) with n free variables.10 One can think of the
�′-formula Fp(x1, . . . , xn) as the ‘translation’ of the �-formula p(x1, . . . , xn) into
the signature �′. We will use the notation F : � → �′ to denote a reconstrual F of
� into �′.

A reconstrual F : � → �′ extends to a map from arbitrary �-formulas to �′-
formulas in the natural recursive manner. In the case where one is only considering
signatures with predicate symbols (as we are here), this map is particularly easy to
describe. Letφ(x1, . . . , xn)be a�-formula.Wedefine the�′-formula Fφ(x1, . . . , xn)
recursively as follows.

• If φ(x1, . . . , xn) is xi = x j , then Fφ(x1, . . . , xn) is the �′-formula xi = x j .
• If φ(x1, . . . , xn) is p(x1, . . . , xn), where p ∈ �1 is an n-ary predicate symbol,
then Fφ(x1, . . . , xn) is the �′-formula Fp(x1, . . . , xn).

• If Fφ and Fψ have already been defined for �-formulas φ and ψ , then we define
the �′-formula F(¬φ) to be ¬Fφ, F(φ ∧ ψ) to be Fφ ∧ Fψ , F(∀xφ) to be
∀xFφ, etc.

Suppose that T and T ′ are theories in the signatures � and �′, respectively. We
say that a reconstrual F : � → �′ is a translation F : T → T ′ if T � φ implies that

9 The result goes through even if one formulates T1 and T2 using two different sort symbols, instead of the
same one sort symbol.
10 This notion naturally extends to signatures that contain function and constant symbols, but that will be
unimportant for our purposes. See (Hodges, 2008), (Button & Walsh, 2018), and (Barrett & Halvorson,
2016a) for details.
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T ′ � Fφ for every�-sentence φ. A translation F gives rise to amap F∗ : Mod(T ′) →
Mod(T ), which takes models of the theory T ′ to models of the theory T . For every
model A of T ′ we first define a �-structure F∗(A) as follows.

• dom(F∗(A)) = dom(A).
• (a1, . . . , an) ∈ pF

∗(A) if and only if A � Fp[a1, . . . , an].
A straightforward argument demonstrates that F∗(A) is indeed a model of T (Barrett
and Halvorson, 2016a, Sect. 4).

A translation F : T → T ′ is conservative if T ′ � Fφ implies that T � φ for
any �-sentence φ. One can easily verify that if a translation F : T → T ′ is such
that F∗ : Mod(T ′) → Mod(T ) is surjective, then F is conservative. In the following
section we will argue that conservative translations can be thought of as ‘embeddings’
or ‘injections’ between theories.

We nowhave our first simple result concerning the existence of translations between
our theories T1 and T2.

Theorem 3 There are conservative translations F : T1 → T2 and G : T2 → T1.

Proof Consider the reconstruals F : �1 → �2 and G : �2 → �1 defined by

F : pi �−→ qi+1 G : qi �−→ p0 ∨ pi

It is trivial that F : T1 → T2 is a translation. Since G maps the �2-sentence
∀x(q0(x) → qi (x)) to ∀x((p0(x) ∨ p0(x)) → (p0(x) ∨ pi (x))) and T1 entails this
latter sentence, it follows that G is a translation too.

It remains to show that F and G are conservative. One does this by showing that
F∗ and G∗ are surjective. Suppose that M is a model of T1. Then M is completely
determined by which of the pi hold of the one thing. We let N be the model of T2
defined as follows: N has the same domain as M , q0 does not hold of the one thing in
N , and qi+1 holds of the one thing in N if and only if pi holds of the only thing in M .
One trivially sees that F∗(N ) = M , so F∗ is surjective. A similar argument shows
that G∗ is surjective. ��

Theorem 3 shows us that T1 and T2 are ‘mutually conservatively translatable’. As
we will argue in the following section, since they are conservative, the translations
F and G are naturally thought of as injections or embeddings between the theories
T1 and T2. But there is a natural sense in which neither is ‘surjective’. For example,
F does not map any �1-formula to a formula which is equivalent modulo T2 to the
�2-formula q0(x). The following property makes this thought precise. We say that a
translation F : T → T ′ is essentially surjective if for every �′-formula ψ there is
a �-formula φ such that T ′ � ∀x1 . . . ∀xn(ψ(x1, . . . , xn) ↔ Fφ(x1, . . . , xn)). One
can easily verify that neither F nor G from Theorem 3 are essentially surjective. But
we do have the following simple result.

Theorem 4 There are essentially surjective translations H : T1 → T2 and K : T2 →
T1.
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Proof Consider the reconstruals H : �1 → �2 and K : �2 → �1 defined by

H : pi �−→ qi K (qi ) =
{
p0 ∧ ¬p0 if i = 0

pi−1 otherwise

It is trivial that H is an essentially surjective translation. Since K maps the�2-sentence
∀x(q0(x) → qi (x)) to ∀x((p0(x) ∧ ¬p0(x)) → pi−1(x)) and T1 entails this latter
sentence, it follows that K is a translation. It is easy to see that K is essentially
surjective. ��

Theorem 4 shows us that T1 and T2 are ‘mutually surjectively translatable’. But
neither H nor K is a conservative translation. One can verify that the theory T1 does not
entail the sentence ∀x(p0(x) → p1(x)), but T2 does entail H(∀x(p0(x) → p1(x))),
i.e. ∀x(q0(x) → q1(x)). Similarly, the theory T2 does not entail ¬∀xq0(x), but T1
does entail K (¬∀xq0(x)), i.e. ¬∀x(p0(x) ∧ ¬p0(x)).

Given that these two theories are mutually conservatively translatable and mutually
surjectively translatable, one wonders whether there is any translation between T1 and
T2 that is essentially surjective and conservative. It would be natural to think of such
a translation as an ‘isomorphism’ between the two theories. Theorem 5 settles this
issue. The most straightforward proof proceeds via the following lemma.

Lemma 1 Let � and �′ be signatures, with T and T ′ theories in those signatures,
respectively. If T and T ′ are definitionally equivalent, then there is a conservative and
essentially surjective translation F : T → T ′. Conversely, if � and �′ are disjoint
and there is a conservative and essentially surjective translation F : T → T ′, then T
and T ′ are definitionally equivalent.

Proof This follows from Propositions 4.5.26, 4.5.27, 4.6.17, and 6.6.21 of (Halvorson,
2019). ��
Theorem 5 There is no essentially surjective and conservative translation between T1
and T2 (in either direction).

Proof This follows immediately from the second half of Lemma 1. ��

5 The Cantor–Bernstein and co-Cantor–Bernstein properties of
theories

We now draw out the philosophical payoffs that these technical claims yield. The first
two payoffs that we will discuss concern two peculiar features that the collection of
first-order theories exhibits. First, it can be that one theory is embeddable in another
and the other is embeddable in the one, but the two theories are not equivalent. And
second, it can be that one theory ‘posits all of the structure’ of another and the other
‘posits all of the structure’ of the one, but the two theories do not posit the same
structure. This means that both of the principles mentioned above are false. We restate
them here for convenience.

123



Synthese (2022) 200 :240 Page 9 of 36 240

Principle 1 If T posits all of the structure of T ′ and T ′ posits all of the structure of
T , then T and T ′ are equivalent.

Principle 2 If T can be embedded in T ′ and T ′ can be embedded in T , then T and
T ′ are equivalent.

For reasons that we will discuss below, it is natural to call Principle 2 the ‘Cantor–
Bernstein property’ of theories and Principle 1 the ‘co-Cantor–Bernstein’ property of
theories. These results show that theories lack both of these properties. It will take a
moment to explain these two claims. The falsity of Principle 1 is particularly relevant
to recent discussions of structure, so we will start with Principle 2 as a ‘warm up’.

The Cantor–Bernstein property

We begin with the following claim.

Claim 1. The existence of a conservative translation F : T → T ′ captures a sense
in which T can be embedded into T ′.

One can think of a conservative translation as a kind of ‘injection’ or ‘embedding’
on sentences of the two theories. The most natural argument for Claim 1 relies on the
following proposition.

Proposition 1 A translation F : T → T ′ is conservative if and only if the following
condition holds: for any �-sentences φ1 and φ2, if T ′ � Fφ1 ↔ Fφ2 then T � φ1 ↔
φ2.

Proof It is immediate that the condition holds whenever F is conservative. Suppose
that the condition holds and that T ′ � Fφ. This means that T ′ � Fφ ↔ ∃x(x = x).
The condition implies that T � φ ↔ ∃x(x = x), so T � φ. ��

The condition that appears in Proposition 1 provides another characterization of
F’s conservativity. And it is clearly capturing a sense in which F is an injection or
embedding on sentences: If F maps two�-sentences to equivalent�′-sentences, then
they must have been equivalent to begin with.

As further evidence for Claim 1, we show how the existence of a conservative
translation F : T → T ′ demonstrates that T can be ‘viewed as a part of’ T ′, or
in other words, that T can be thought of as a ‘sub-theory’ of T ′.11 The following
proposition substantiates this idea.

Proposition 2 Let � and �′ be disjoint signatures with T and T ′ theories in those
signatures, respectively. If F : T → T ′ is a conservative translation, then there is a
conservative extension of T that is definitionally equivalent to T ′.

11 A clarification about terminology will be useful. Note that by saying that T is a ‘sub-theory’ or ‘a part
of’ T ′ we do not mean to say that the axioms of T are a subset of the axioms of T ′. Rather, the idea is that
if we think of a theory as a kind of ‘inferential structure’ over the collection of formulas in the theory’s
signature, then a conservative translation from T to T ′ shows that the inferential structure of T ′ is not more
‘coarse-grained’ than that of T . This is what Proposition 2 shows. It is also in this sense that if T ′ is a
conservative extension of T , then T is a ‘part’ of T ′; the set of all formulas in the signature of T ′ will be
strictly greater than the set of all formulae in the signature of T , but because the extension is conservative,
the inferential relations among these formulas of T will be the same in both cases.
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Proof We show that there is a definitional extension of T ′+ of T ′ that is a conservative
extensionofT . Consider the�∪�′-theoryT ′+ = T ′∪{∀x(Fp(x) ↔ p(x)) : p ∈ �}.
It is clear that T ′+ is a definitional extension of T ′ to the signature � ∪ �′. Let φ

be a �-sentence and suppose that T � φ. Then T ′ � Fφ, since F is a translation.
By the way that we have defined T ′+ it follows that T ′+ � φ, so T ′+ is an extension
of T . Suppose now that T ′+ � φ. Then once again by the definition of T ′+ we see
that T ′+ � Fφ. Since T ′+ is a definitional extension of T ′, it is also a conservative
extension, so it must be that T ′ � Fφ. Since F is conservative, T � φ. ��

One can understand this proposition in the following way. The existence of a con-
servative translation from T to T ′ tells us that, up to definitional equivalence, T ′ is a
conservative extension of T . This captures a strong sense in which T is a sub-theory
of T ′. If T ′ is a conservative extension of T , then T can be thought of as exactly the
part of T ′ that is formulated in the language �, since T entails a �-sentence if and
only if T ′ does.

Note that Proposition 2 implies that T1 is (up to definitional equivalence) a con-
servative extension of T2 and vice versa. The �1 ∪ �2-theory T+

2 that results from
adding the axioms ∀x(pi (x) ↔ qi+1(x)) for each i to T2 is definitionally equivalent
to T2 and a conservative extension of T1. And the�1∪�2-theory T

+
1 that results from

adding the axioms ∀x(qi (x) ↔ (p0(x) ∨ pi (x))) to T1 is definitionally equivalent to
T1 and a conservative extension of T2. This captures a sense in which we can obtain
T1 from T2 (and vice versa) simply by adding vocabulary and axioms ‘on this new
vocabulary’, in the sense that the new axioms do not result in any new entailments in
purely the old vocabulary. So simply by ‘adding structure’, and saying how this new
structure relates to the old structure, we can move from T1 to T2. We can move from
T2 to T1 in precisely the same fashion: simply by adding structure. This is a surprising
result; one can add structure to either of the two theories in order to arrive at the other.
We will return to this fact in the following section, when we discuss whether or not
structure can be ‘counted’.

With Claim 1 now in hand, Theorem 3 captures a sense in which our theory T1
can be embedded in T2 and our theory T2 can be embedded in T1. There are con-
servative translations—which, as we just argued, can be thought of as injections or
embeddings—in both directions between our two theories. The following figure illus-
trates the sense in which T1 is a sub-theory of T2 and vice versa. The dotted arrows
indicate theory-relative entailments between the formulas in each of our theories (Fig.
1).

The existence of the conservative translation F : T1 → T2 shows that T1 can be
viewed as the part of T2 that is constructed from the predicate symbols q1, q2, . . ., and
so on—the sub-theory of T2 that is surrounded by the box in the above figure. And
similarly the existence of the conservative translation G : T2 → T1 shows us that one
can view T2 as a part of T1; it is that part of T1 that is constructed from the�1-formulas
p0, p0 ∨ p1, p0 ∨ p2, . . ., and so on—the part of the theory T1 that is surrounded by
the box in the above figure.

Despite the fact that these theories are mutually embeddable, however, they are
certainly not equivalent. Theorems 1, 2, and 5 make this precise. Our theories T1
and T2 are neither definitionally nor Morita equivalent, and there does not exist an
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Fig. 1 .

essentially surjective and conservative translation between them. So we have shown
that, on particularly natural understandings of the relations ‘is embeddable in’ and ‘is
equivalent to’, Principle 2 is false.

We should take a moment to unravel why the falsity of Principle 2 is surprising.
Perhaps the most natural way to state this result is by saying that theories lack the
Cantor–Bernstein property. The Cantor–Bernstein theorem famously says that if there
are injections f : X → Y and g : Y → X between sets X and Y , then there
is a bijection between X and Y . Because of this theorem we say that sets have the
Cantor–Bernstein property. And indeed, it makes sense to talk about the Cantor–
Bernstein property for any category. One says that a category C has the Cantor–
Bernstein property if for any objects c and d ofC whenever there is amonomorphism
(i.e. a generalization of the concept of an injection or embedding) from c → d and a
monomorphism d → c, the objects c and d are isomorphic. The property captures a
basic intuition one might have about the notion of ‘being a part of’: If X is a part of Y
and Y is a part of X , then X and Y are the same. Our example here demonstrates that
the category of theories does not have the Cantor–Bernstein property. In other words,
the analogue of the Cantor–Bernstein theorem does not hold of theories: T1 and T2
can be embedded into one another, but nonetheless they are not the same. So this basic
intuition about ‘being a part of’ does not hold of theories: T1 can be viewed as a part
of T2 and T2 can be viewed as a part of T1, but they are not the same theory.12

The Co-Cantor–Bernstein property

Theories also lack what we will call the co-Cantor–Bernstein property. This is partic-
ularly relevant to recent discussions of structure in philosophy of science. We show

12 The fact that theories lack the Cantor–Bernstein property is already known by certain logicians. See,
for example, the work of Visser (2006, p. 313) and (Andréka et al., 2005). It is not, however, well known
by the broader philosophical community. Another example of the failure of the Cantor–Bernstein property
is the relation between classical and intuitionistic logic. Intuitionistic logic can obviously be embedded in
classical logic. The famous Gödel translation shows that intuitionistic logic can be embedded in classical
logic. But it is nonetheless unnatural to think of the two logics as equivalent, as was recently pointed out,
for example, by (Dewar, 2018).
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first that Principle 1 is false. In other words, it can be that one theory ‘posits all of the
structure’ of another and the other ‘posits all of the structure’ of the one, but the two
theories are inequivalent and do not posit the same structure.13

We begin with the following claim.

Claim 2. The existence of an essentially surjective translation F : T → T ′ captures
a sense in which T posits all of the structure of T ′.

The idea here is simple. When a translation F is essentially surjective, any formula
ψ in the language of T ′ is expressible using the language of T ; that is precisely what
the essential surjectivity of F guarantees. There is some formula φ in the language
of T that F translates to a formula that is equivalent modulo T ′ to ψ . Intuitively, this
means that the existence of an essentially surjective F shows that the theory T can
define or ‘build’ all of the structure that T ′ has. T can express all of the ‘concepts’
that T ′ employs.

One can grasp the basic idea here by considering the following two simple examples.
Suppose that T is a �-theory and consider the signature �+ = � ∪ {p}, where p is
a new unary predicate symbol not contained in �.

Example 1 Let T+ be the �+-theory that has precisely the same axioms as T . There
is a natural sense in which T+ has all of the structure of T , but not vice versa. In
particular, T+ has the new piece of structure p that T lacks. One can capture this basic
idea by looking to facts about essentially surjective translations between these two
theories. First, there is an essentially surjective translation T+ → T . The translation
simply maps each symbol in � to itself and maps p to any �-formula with one free
variable. It is trivial to verify that this is indeed an essentially surjective translation.
This makes precise our basic intuition that T+ has all of the structure of T . Second,
since there is no �-formula that is logically equivalent to p, the translation T → T+
that maps every element of � to itself is not essentially surjective. This makes precise
our intuition that T does not have all of the structure of T+.

Example 2 Now suppose instead that T+ is a definitional extension of T to the sig-
nature �+. In this case there is a strong sense in which T and T+ have precisely the
same structure; p is not a piece of structure that is new to T+. Rather, it is explicitly
definable in terms of those structures that T posits, so there is a strong sense in which
T itself already posits the structure p. This basic intuition can be made precise by
noticing that there are essentially surjective translations T → T+ and T+ → T . It
follows from our discussion in Example 1 that there is an essentially surjective transla-
tion T+ → T . And since T+ is a definitional extension of T , the translation T → T+
that maps every element in � to itself is in this case essentially surjective since the
�-formula φ that defines p is logically equivalent to p.

13 Another way to put this is as follows: It can be that one theory ‘is as ideologically rich as’ another and
the other ‘is as ideologically rich as’ the one, but the two theories are not ideologically equivalent. The
ideology of a theory is usually thought of as the range of concepts that are expressible in the language in
which the theory is formulated (Quine, 1951). Quine (1951, p. 15) himself remarks that one can investigate
the ideology of a theory by, as we do here, examining the kinds of translations that exist between theories:
“Much that belongs to ideology can be handled in terms merely of the translatability of notations from one
language into another; witness the mathematical work on definability by Tarski and others.”
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Examples 1 and 2 provide is our first argument for Claim 2: It is a direct general-
ization of the kinds of simple examples that formed our intuitions about amounts of
structure in the first place. We can, however, do better than an argument by example.
We will call a �-theory T+ that is an extension of a �-theory T a specification of T .
Note that since both T+ and T are formulated in the same signature, a specification
of T results from merely ‘adding axioms’ (and no new vocabulary) to T . We have the
following proposition.

Proposition 3 Let � and �′ be disjoint signatures and T and T ′ theories in those
signatures, respectively. If F : T → T ′ is an essentially surjective translation, then
there is a specification of T that is definitionally equivalent to T ′.

Proof Suppose that we have such an essentially surjective translation F : T → T ′
from the �-theory T to the �′-theory T ′. This allows us to define a specification of
T as follows:

T F = {φ : T ′ � Fφ}

In other words, T F is the �-theory that has as axioms those �-sentences that, once
translated via F into the signature �′, are entailed by T ′. It is easy to verify that T F

is indeed a specification of T . If T � φ, then T ′ � Fφ since F is a translation, so φ is
among the axioms of T F and we therefore trivially see that T F � φ. Furthermore, it
is also easy to see that F : T F → T ′ is both essentially surjective and conservative,
simply by the way we defined T F . So T F and T ′ are equivalent, in the sense that there
is an essentially surjective and conservative translation between them. Since � and
�′ are disjoint, Lemma 1 implies that the two theories are definitionally equivalent. ��

One can understand this proposition in the following way. The existence of an
essentially surjective translation from T to T ′ tells us that, up to definitional equiv-
alence, T ′ is a specification of T . Note that Proposition 3 implies that T1 is (up to
definitional equivalence) a specification of T2 and that T2 is (up to definitional equiv-
alence) a specification of T1. By adding the axioms ∀x(p0(x) → pi (x)) for each i to
T1, and no new vocabulary, one arrives at a theory that is definitionally equivalent to
T2. And by adding the axiom ∀x(¬q0(x)) to T2, and no new vocabulary, one arrives
at a theory that is definitionally equivalent to T1. Each of the theories from our main
example can therefore be obtained from the other simply by adding axioms. This in
a sense the complement to the fact, implied earlier by Proposition 2, that each of the
theories can be obtained from one another simply by adding vocabulary and some
axioms on that new vocabulary.

We can now unravel why Proposition 3 provides evidence for Claim 2. Since equiv-
alent theories must posit the same structure, the specification T F of T posits the same
structure as T ′. And since it is a specification, T F is obtained from T bymerely adding
axioms and no new vocabulary or structure. Since no new vocabulary or structure has
been added, a specification of T cannot posit more structure than T posited itself.
Putting this all together, we have that T posits all of the structure of T F , which in turn
posits the same structure as T ′, so T posits all of the structure of T ′. This argument
yields our claim. We supposed that there exists an essentially surjective translation
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F : T → T ′ and showed that captures a strong sense in which T posits all of the
structure of T ′.

It is worth taking a moment to further explain why a specification of a theory does
not posit more structure than the original theory did. In particular, one might worry
that sometimes specifications do posit more structure. For example, one might argue
that the theory of Abelian groups—which is just like the theory of groups but also
says that multiplication is commutative—posits more structure than the mere theory
of groups does. The former is in some sense more ‘restrictive’. More generally, the
thought is that adding axioms can add structure to a theory too; it is not just new
vocabulary that adds structure.

The issue here is that there are two distinct ways in which we can ‘add’ something
to a theory. On the one hand, we can add new vocabulary; on the other hand, wemerely
can add new axioms (and no new vocabulary). The question is then whether the latter
way of adding something should count as adding structure. If so, then specifications
would add structure. There are, however, a few reasons to think that adding axioms is
not a case of adding structure. In brief, this idea is simply not in line with the concept
of structure that is usually appealed to in the philosophy of science literature.

We provide some evidence that adding axioms is not a paradigm case of adding
structure. The first piece of evidence for this has to dowith the relationship that is often
emphasized between structure and symmetries. The amount of structure that a theory
posits is standardly thought to be inversely related to the ‘number of symmetries’ that
the theory admits. Earman (1989, p. 36), for example, says that “[a]s the space-time
structure becomes richer, the symmetries become narrower.” And North (2009, p. 87)
writes that “stronger structure […] admits a smaller group of symmetries.” The same
basic idea is suggested by (Friedman, 1983), and has been appealed to in much of the
recent literature on how to ‘compare’ amounts of structure between theories. Indeed,
it has become standard to think of the move from Newtonian to Galilean spacetime
as a paradigm case of removing structure from a theory. In that case no new axioms
are added; rather, the new theory admits more symmetries than the old one, since
the concept of ‘absolute rest’ has been excised. Note that moving from a theory to a
specification of it is not like the move from Newtonian to Galilean spacetime. It does
not reduce the collection of symmetries in the relevant sense. One can trivially see that
for every model of the specification, there is a model of the original theory that has
precisely the same automorphism group. Indeed, every model of the specification is
itself a model of the original theory. That is certainly not the case for the Newtonian
and Galilean spacetime theories. Moreover, the move from Galilean to Newtonian
spacetime is clearly an addition of vocabulary (and some new axioms involving that
vocabulary) rather than an addition of merely axioms; we have intuitively added in
a new ‘is at rest’ predicate. This is evidence that, on the standard understanding of
structure, adding axioms is not a paradigm case of adding structure.

North (2009, p. 65) presents a collection of examples that are similar in this regard
to the case of Newtonian and Galilean spacetime:

Note that we can also compare different degrees, or amounts, of structure. Com-
pare a Euclidean plane with a similar plane that has a preferred spatial direction.
The Euclidean plane without a preferred direction has less structure than the
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one with a preferred spatial direction. Picking out a preferred direction requires
additional structure (an orientation). In building up a mathematical space, some
objects will presuppose others, in that some of the mathematical objects cannot
be defined without assuming others. Starting from a structureless set of points,
we can add on different ‘levels’ of structure. A bare set of points has less struc-
ture than a topological space, a set of points together with a topology (specifying
the open subsets). A topological space has less structure than a metric space: in
order to define a metric, the space must already have a topology.

All of these examples—the Euclidean plane and the Euclidean plane with a preferred
direction, a set and a topological space, a topological space and a metric space—
involve an addition of vocabulary. (These mirror the examples presented by (Barrett,
2021).) None of them involve merely an addition of axioms. So once again we have
evidence that adding axioms is not a paradigm case of adding structure. If it were, then
some of the simple examples that philosophers give to illustrate the concept would no
doubt involve a move from a theory to a specification of it.

It is worth expanding further on this point. The idea that symmetries can be used
as a guide to structure yields two more conceptual arguments for Claim 2 and for
the idea that philosophers who discuss amounts of structure likely do not mean to
imply that merely adding more axioms (and no new vocabulary) adds structure. In
brief, one is led to Claim 2 by taking seriously a collection of tools that have recently
been used to compare the structure of theories. As we mentioned above, it has been
suggested—by (Earman, 1989), (Friedman, 1983) andmore recently by (North, 2009),
(Swanson & Halvorson, 2012), and (Barrett, 2015a, b)—that the size of an object’s
automorphism group can be used as a guide to the amount of structure that the object
has. An automorphism of an object is a structure-preserving bijection from the object
to itself. If an object has more automorphisms, therefore, that suggests that the object
has less structure that these automorphisms are required to preserve. The important fact
for our purposes here is the following: If there is an essentially surjective translation
from T to T ′, this captures a sense in which the models of these two theories have
automorphism groups of precisely the same size.

It only takes a moment to make this claim precise. An automorphism of a �-
structure M is a bijection f : M → M that satisfies M � p[a1, . . . , an] if and
only if M � p[ f (a1), . . . f (an)] for any predicate symbol p ∈ � and elements
a1, . . . , an ∈ M . One can easily prove the following.

Proposition 4 Let F : T → T ′ be an essentially surjective translation with N amodel
of T ′. Then F∗(N ) and N have the same automorphism group.

Proof If f : N → N is an automorphism of N , one can easily verify using the
definition of F∗ that f is also an automorphism of F∗(N ). Suppose that f : F∗(N ) →
F∗(N ) is an automorphism and let q ∈ �2 be a predicate symbol in the signature of
T ′. We immediately see that for any a ∈ N :

N � q[a] ⇐⇒ F∗(N ) � φ[a] ⇐⇒ F∗(N ) � φ[ f (a)] ⇐⇒ N � q[ f (a)]
Here φ is a �1-formula such that Hφ is logically equivalent to q, whose existence is
guaranteed by the essential surjectivity of F . The first and third biconditionals follow

123



240 Page 16 of 36 Synthese (2022) 200 :240

from this choice of φ and the definition of F∗, while the second follows from the fact
that f is an automorphism of F∗(N ). This means that f is an automorphism of N . ��

Suppose that there is an essentially surjective translation F : T → T ′. Then
Proposition 4 shows that each model N of T ′ can be paired up with a corresponding
model F∗(N ) of T in such a way that these two models have precisely the same
amount of structure, according to one of our best methods of comparing amounts of
structure.

Moreover, the essential surjectivity of F is actually related to ‘symmetries’ between
objects of the two theories even more closely than Proposition 4 suggests. It has
recently been shown that a translation F : T → T ′ is essentially surjective if and
only if the map F∗ is a full functor from the category of models Mod(T ′) to Mod(T )

(Barrett, 2021). We take a moment to unravel this result. The category of models
Mod(T ) for a theory T has as objects the models of T , and the arrows between the
objects are elementary embeddings between these models.14 A functor F : C → D is
full if for all objects c1, c2 in C and arrows g : Fc1 → Fc2 in D there exists an arrow
f : c1 → c2 in C with F f = g. The existence of a full functor from C to D captures
a sense in which there are not ‘more’ arrows between the objects of D than there are
between the objects of C . This has led (Baez et al., 2006) to classify functors that are
not full as those that ‘forget structure’, capturing a sense in which the objects of D
have less structure (since they admit more symmetries) than the objects of C . This
method of comparing amounts of structure has been employed widely in philosophy
of physics in recent years.15

Since essentially surjective translations F : T → T ′ correspond to underlying
functors F∗ that are full, this captures an even more robust sense in which the essential
surjectivity of F shows that T posits all the structure of T ′. When F is essentially
surjective, F∗ : Mod(T ′) → Mod(T ) is full. So according to the Baez method
of comparing structure, F∗ has not ‘forgotten’ structure and hence T has all of the
structure of T ′. This is in fact intuitive, since the fullness of F∗ is telling us that the
theory T ′ has just as many symmetries as the theory T . So if more symmetries is what
indicates less structure, it cannot be that T has less structure than T ′.

We have been arguing that the existence of an essentially surjective translation
F : T → T ′ captures a sense in which T ′ has just as many, if not more, symme-
tries as T . And therefore Claim 2 respects the basic idea that many philosophers have
expressed about structure: that more symmetries should indicate less structure. One
might object to this by arguing that there is also a sense in which a specification has
‘fewer’ symmetries than the original theory. Let Aut(T ) be the class of all automor-
phisms of models of T . When we move from T to a specification T ′ it will—insofar
as the two theories are not logically equivalent—be the case that Aut(T ′) is properly
contained in Aut(T ). This is because Mod(T ′) is contained in Mod(T ), so any auto-
morphisms of the models that have been ‘lost’ in the move from T to T ′ will no longer
be in Aut(T ). This is indeed a sense in which a specification has ‘fewer’ symmetries
than the original theory did. We would like to suggest, however, that this sense does

14 For further preliminaries on the relevant category theory see (Halvorson, 2019).
15 It is also well known in the category theory community. See (Baez & Shulman, 2010). For further details
on it see (Barrett, 2021) and the references therein.

123



Synthese (2022) 200 :240 Page 17 of 36 240

not yield a satisfactory understanding of amounts of structure. In particular, if we look
to classes of automorphisms of models of theories to determine amounts of structure,
we are led to many unintuitive verdicts about which theories posit more structure than
which others.

The following examples provide further evidence.

• Let T be an inconsistent theory. Then since Aut(T ) is empty, it is properly con-
tained in Aut(T ′) for every consistent theory T ′. So T posits more structure than
every consistent theory, no matter how rich the vocabulary is that the other theory
employs. (Note that there is no translation, let alone an essentially surjective one,
from T to any consistent theory.)

• Let T be a single-sorted theory that says there is exactly one thing, and let T ′ be a
two-sorted theory that says that there is exactly one thing of the first sort, and has all
the axioms of ZF set theory in the second sort. Aut(T ) has a single member, while
Aut(T ′) is quite rich. This is because automorphisms of models of T ′ consist of
pairs of maps (one on elements of the first sort, one on elements of the second sort)
that preserve the vocabulary of T ′, and there are some non-trivial automorphisms
of models of ZF. And so this would seem to imply that the trivial theory T posits
more structure than ZF set theory. (There is, indeed, a compelling sense in which
T ′ is equivalent to ZF set theory; the two theories are Morita equivalent.)

• Let T ′ be the theory of groups, and let T be the theory of groups plus the additional
axiom saying that there is exactly one thing. Note that T is definitionally equivalent
to the theory in the empty signature with the one axiom saying there is exactly
one thing. It is clear that the class of automorphisms of models of T is a subclass
of the class of automorphisms of T ′ since the class of models of T is a subclass
of the class of models of T ′. But it is unappealing to say that the trivial theory T
posits more structure than all of group theory.

Both of these cases yield unintuitive verdicts. This suggests that this way of comparing
numbers of symmetries between theories is not what philosophers who emphasize the
connection between symmetry and structure have in mind. In particular, the intuition
about amount of structure being inverse to symmetry group size comes from com-
paring individual models—as we did above when motivating Claim 2—and not from
comparing all symmetries of all models by looking at Aut(T ) as this counterargument
suggests.

We can now return properly to the question of specifications. Suppose that T ′ is
a specification of T . There is clearly a full functor from Mod(T ′) to Mod(T ). The
functor that ‘includes’ the category Mod(T ′) into Mod(T ) is full—or in other words,
the functor i∗, where i is the identity translation i : T → T ′—since every model of
T ′ is a model of T . According to all of the proposals for how to compare amounts of
structure that are on the table, therefore, a specification does not have more structure
than the theory we began with. The point here is a simple one. There is a conceptual
difference between, on the one hand, the relationship that holds between topological
spaces and sets, and on the other hand, the relationship that holds between Abelian
groups and groups. In the former case, the difference lies in the ‘number of symmetries’
the objects admit. In the latter case, the difference lies in the ‘number of models’ that
the theories have.
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One can also understand this conceptual difference as we described it above. In
the first case the difference is that the one theory has more vocabulary (and some
new axioms involving that new vocabulary) and therefore fewer symmetries since
they must preserve all of this new vocabulary. In the second case the one theory has
no new vocabulary, only some new axioms in the old vocabulary. Philosophers of
science have traditionally described the former kind of case as exhibiting a difference
in ‘structure’; one can see this from the fact that they emphasize the close relationship
between structure and symmetry. And clearly a specification and its original theory
do not differ in that sense. Rather, they only differ in the latter sense. A specification
will most often have ‘fewer’ models than the original theory, in the sense that some
models of the original theory will not be models of the specification, but there is no
substantive difference in the symmetries that these models admit.

This leads us to another piece of evidence that adding only axioms does not add
structure in the sense that the literature has focused on. It is standard to say that adding
axioms increases ‘logical strength’, not structure. The fact that there is a different
term for what happens when we add axioms—we add logical strength—suggests
that this is not what philosophers have in mind when they talk about structure. The
concept of logical strength goes back at least to (van Fraassen, 1980), who says that
“logical strength is determined by the class of models (inversely: the fewer the models
the (logically) stronger the theory!).” Adding axioms to a theory is what results in
fewer models, so we have good reason to think that logical strength in van Fraassen’s
sense is what is increased when axioms are added. This lines up with our idea from
above. Adding axioms to a theory results in fewer models, while adding structure
to a theory in the form of new vocabulary results in fewer symmetries admitted by
these models. The same concept of logical strength has been employed in more recent
literature. Williamson (2017, p. 336) writes that “in the context of logic […] a theory
T is stronger than a theory T ∗ if and only if T entails T ∗ but T ∗ does not entail T :
every theorem of T ∗ is a theorem of T , but not every theorem of T is a theorem of
T ∗.” Williamson’s concept of logical strength lines up perfectly with the notion of a
specification. We should therefore think that logical strength, and not the amount of
structure posited, is what is increased when we move to a specification.

There is a potential objection that one might raise at this point. One can provide
an example of a specification T ′ of a theory T that is definitionally equivalent to a
theory that appears to add vocabulary to T . This would mean that specifications (up to
definitional equivalence) add vocabulary, and so can be said to positmore structure than
the original theory. We have the following example. Let � be a signature containing a
unary predicate symbol p, and consider a �-theory T . Let T ′ be a specification of T
that contains some new axiom involving p. Let T ′+ be the� ∪{p′}-theory where p′ is
a new unary predicate symbol, and T ′+ has all of the axioms of T ′ but also the axiom
∀x(p(x) ↔ p′(x)). We immediately see that T ′+ and T ′ are definitionally equivalent;
indeed, the former is a definitional extension of the latter. But T ′+ is obtained from T
by adding both vocabulary and axioms. So if definitionally equivalent theories posit
the same amount of structure, and every addition of vocabulary to a theory added
structure, then specifications add structure.

This example helps us to clarify exactly what it is to ‘add vocabulary’ to a theory.
A mere addition of vocabulary to a theory does add structure, but adding axioms can
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then sometimes take away that structure. That is what happens in the above example:
the new structure was ‘collapsed’ or ‘reduced’ back into the old by the addition of the
axiom defining the new structure p′ as being equivalent to the old piece of structure
p. Just as not every axiom added is a ‘new axiom’—if, for example, the axiom was
already entailed by the original theory—not every piece of vocabulary added is new
structure.When there is no essentially surjective translation from T to T ′, that captures
a robust sense in which T ′ resulted from a genuine addition of vocabulary to T . If there
is no essentially surjective translation from T to T ′, that means that the former cannot
‘construct’ or ‘define’ all of the vocabulary that the latter employs. This guarantees
that a specification T ′ of T is not definitionally equivalent to any theory that genuinely
adds vocabulary to T .16 This does mean that a specification might posit less structure
than the original theory, if the specification collapses some of the structures of the old
theory. Consider, for example, a theory with two unary predicate symbols p and q
and no axioms. The specification of this theory that says ∀x(p(x) ↔ q(x)) has taken
structure away from the original theory; it has in effect reduced the genuine vocabulary
that the theory employs.

With this clarification in hand, we have a collection of compelling reasons to think
that specifications do not positmore structure than the original theory. First, the operant
notion of structure in the literature meshes better with the understanding of ‘more
structure’ as ‘more vocabulary’ rather than ‘more axioms’. And second, the concept
of ‘more axioms’ has been explicitly discussed by philosophers in the guise of ‘logical
strength’ and not structure. That said, one may still think that philosophers should
think that more axioms means more structure, despite our claim that they do not as a
descriptive matter of fact. We will return to this issue in the following section. We will
show that even if one thinks that specifications posit more structure than the original
theory, amounts of structure still cannot be ‘counted’.17

We have now argued for Claim 2, and we can return to consider our pair of theories
T1 and T2. As we showed in Theorem 4, there are essentially surjective translations
H : T1 → T2 and K : T2 → T1. Claim 2 implies that T1 posits all of the structure of T2
and T2 posits all of the structure of T1.18 But Theorems 1, 2, and 5 again imply that T1
and T2 are inequivalent and do not posit the same structure. This shows that Principle

16 If there were a theory U that was definitionally equivalent to T ′ and genuinely added vocabulary to
T , then there would be an essentially surjective translation from T to T ′ (the identity translation) and
an essentially surjective translation from T ′ to U (by Lemma 1). This contradicts the fact that (since U
genuinely adds vocabulary to T ) there is no essentially surjective translation from T to U .
17 And moreover, even if one thinks that specifications posit more structure than the original theory, the
conclusion of this present section still follows: there can be theories such that the one posits all of the
structure of the other and vice versa, but they do not posit the same structure. It only takes a moment to see
this. Suppose that adding axioms to a theory adds structure. The existence of the conservative translations
between T1 and T2, in combination with Proposition 2, shows that we can obtain the theory T1 from T2
(add vice versa) just by adding new predicates to T1 and some new axioms that involve those predicates.
This is what Proposition 2 illustrated. This captures a sense in which T2 posits all of the structure of T1; it
can be obtained from T1 by adding axioms and vocabulary. And the same holds in the other direction. T1
can be obtained from T2 by adding axioms and vocabulary. So T1 posits all of the structure of T2 and vice
versa, but they do not posit the same structure, and the Co-Cantor–Bernstein property still does not hold.
18 Intuitively, H shows that T1 defines q0 in the following sense: H ‘translates’ T1 to a theory to which
merely adding axioms turns it into T2. This is implied by the proposition above and our discussion of
specifications.
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1 is false and theories lack what one might call the ‘co-Cantor–Bernstein property’.
It is easy to verify that if there are surjections f : X → Y and g : Y → X between
sets X and Y , then there is a bijection between X and Y . One might call this the ‘co-
Cantor–Bernstein theorem’, and therefore say that sets have the co-Cantor–Bernstein
property. Once again, it makes sense to talk about the co-Cantor–Bernstein property
for any category.We can say that a categoryC has the co-Cantor–Bernstein property
if for any objects c and d of C whenever there is an epimorphism (i.e. a generalization
of the concept of an surjection) from c → d and an epimorphism d → c, the objects
c and d are isomorphic. Our example here demonstrates that the category of theories
does not have this property. Our two theories T1 and T2 can be ‘surjected onto’ one
another, but nonetheless, as Theorems 1, 2, and 5 tell us, they are not equivalent. The
structural commitments that theories make therefore behave in a much more subtle
manner than has so far been recognized.

6 Structure and equivalence

We now turn our attention to two payoffs that our results yield for recent discussions
of structure and equivalence. First, they allow us to clarify the overall geography of
standards of equivalence that have recently been proposed. And second, they allow us
to raise a concern about recent discussion of the ‘amount of structure’ that different
theories posit.

Morita equivalence and translation

The first payoff concerns the recent debate about when two theories should be con-
sidered equivalent, and in particular, the relationship that Morita equivalence bears to
‘translation’ criteria for equivalence—those standards of equivalence that require the
existence of suitable translations between the theories in question. The simple exam-
ple that we have considered here allows us to further clarify the overall geography of
standards of equivalence between theories.19

Two theories T and T ′ are mutually faithfully interpretable if there are conser-
vative translations F : T → T ′ and G : T ′ → T .20 Mutual faithful interpretability
is one standard of equivalence that requires a kind of ‘mutual translatability’ between
the two theories in question. But one can easily imagine others. For example, we say
that two theories aremutually surjectively interpretable if there are essentially sur-
jective translations F : T → T ′ and G : T ′ → T . Now it is already well known that

19 For discussion of these relationships, see for example (Barrett & Halvorson, 2016a, b) and Button and
Walsh (2018, p. 118). In addition to the recent articles on equivalence already cited, see (Barrett, 2017),
(Coffey, 2014), (Curiel, 2014), (Halvorson, 2013), (Glymour, 2013), (Hudetz, 2015, 2017a), (Knox, 2011,
2014), (North, 2009), (Rosenstock et al., 2015), (Rosenstock & Weatherall, 2016), (Teh & Tsementzis,
2017), (Van Fraassen, 2014), and (Weatherall, 2016, 2017), and the references therein. See (Weatherall,
2019) for a survey of recent work.
20 See Button and Walsh (2018, p. 117). Our presentation here is less general. Button and Walsh work
with a general notion of an interpretation, which allows one theory to define the domain of another theory
through definable equivalence relations.
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definitional equivalence is a stricter standard of equivalence than mutual faithful inter-
pretability. More precisely, any pair of theories that are definitionally equivalent are
mutually faithfully interpretable, but there are mutually faithful interpretable theories
that are not definitionally equivalent (Andréka et al., 2005; Button & Walsh, 2018).
One wonders exactly where these standards of mutual translatability fall in the broader
geography of standards of equivalence.21

In particular, Morita equivalence is a more liberal notion of equivalence than defi-
nitional equivalence. So it is natural to ask the following questions: If two theories are
mutually faithfully interpretable, then are they also Morita equivalent? If two theories
are mutually surjectively interpretable, then are they also Morita equivalent? If two
theories are mutually faithfully interpretable and mutually surjectively interpretable,
then are they alsoMorita equivalent?Beyond simply being important for better under-
standing the relations between different standards of equivalence, these questions help
us to evaluate these standards of equivalence on their ownmerits, especially since stan-
dards of equivalence that merely require mutual translatability between theories tend
to be implausibly liberal. For example, if the answer to the first question were yes, then
that would be amark againstMorita equivalence as a plausible standard of equivalence
between theories. It is widely accepted that mutual faithful interpretability is too lib-
eral a standard of equivalence; it considers theories to be equivalent that we have good
reason to consider inequivalent (Szczerba, 1977). So if mutual faithful interpretability
entailed Morita equivalence, that would immediately imply that Morita equivalence
is too liberal a standard as well.22

The answer to all of the above questions, however, is no. It is not the case that
Morita equivalence is entailed by mutual faithful interpretability, nor by mutual sur-
jective interpretability, nor by their conjunction. Our discussion here has demonstrated
precisely this. It follows from Theorem 3 that our theories T1 and T2 are mutually
faithfully interpretable and from Theorem 4 that they are mutually surjectively inter-
pretable, but as was stated in Theorem 2, they are not Morita equivalent. While this is
a mark in favor of Morita equivalence—or rather, the dismissal of a potential charge
against it—these facts do raise some important questions. Morita equivalence is more
liberal than definitional equivalence, which itself is the same as a particular kind of
translation criterion. But on the other hand, it is less liberal than a handful of other
translation criteria for equivalence—mutual faithful interpretability andmutual surjec-
tive interpretability. One therefore wonders how exactly Morita equivalence relates
to translatability between theories. When two theories are Morita equivalent, what
kind of translation does that imply exists between them? And conversely, what kind
of translation between two theories will imply that they are Morita equivalent? Is
Morita equivalence the same as some translation criterion? This question is of obvi-
ous philosophical importance.Morita equivalence conceptually resembles definitional
equivalence since it requires the existence of a particular kind of extension of the two

21 We will discuss how they relate to Morita equivalence below, but one also wonders how they relate
to categorical equivalence, a strictly weaker standard than Morita equivalence. In particular, one wonders
whether there is an example of theories that are mutually faithfully or surjectively translatable, but not
categorically equivalent. The theories T1 and T2 that we consider above are categorically equivalent (Barrett
& Halvorson, 2016b), so the question remains open.
22 See (McEldowney, 2020), for example, for worries about Morita equivalence along these lines.
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theories in question. But it can nonetheless be difficult to see how Morita equivalent
theories ‘say the same thing’. If one can make precise the kind of ‘intertranslatabil-
ity’ that Morita equivalence corresponds to, this would take a significant step towards
capturing the sense in which Morita equivalent theories ‘say the same thing’.

It is worth taking a moment to mention some work that has recently been done on
these questions, and to raise a question of our own.23 Recall that we have the following
result about definitional equivalence. If � and �′ are disjoint signatures and T is a
�-theory and T ′ is a �′-theory, then the following conditions are equivalent:

• T and T ′ are definitionally equivalent.
• There is an essentially surjective and conservative translation F : T → T ′.
• There are translations F : T → T ′ and G : T ′ → T such that i) T � φ ↔ GFφ

for every �-formula φ and ii) T ′ � ψ ↔ FGψ for every �′-formula ψ .

The equivalence of the first two conditions follows from Lemma 1, while Theorems
4.6.17 and 6.6.21 of (Halvorson, 2019) imply that the third is equivalent to the first
two. It is worth taking a moment to unravel this result. The third condition is telling us
that definitional equivalence is capturing a particular kind of ‘isomorphism’ between
theories; there exist translations between T and T ′ that are ‘almost inverse’ to one
another (in the precise sense given by the third condition) if and only if the two
theories are definitionally equivalent. When the third condition holds we say that
the theories T and T ′ are intertranslatable, and we say that F and G are each
one half of an intertranslation. The second condition provides us with a necessary
and sufficient condition that we can use to tell, simply by examining a translation
F : T → T ′, whether it is an ‘isomorphism’ in this sense, i.e. whether it is one half
of an intertranslation between T and T ′.

One would like to have an analogous result about Morita equivalence. Such a result
would clarify the sense in which Morita equivalent theories are saying the same thing.
One immediately notices, however, that the variety of translation that we have been
working with so far is too restrictive to be closely related to Morita equivalence; two
theories that employ different sort symbols can beMorita equivalent, but our variety of
translation does not allow one to translate sorts to other sorts. Fortunately, the concept
of a ‘generalized reconstrual’ exists. A generalized reconstrual F : � → �′ provides
one with the flexibility to translate between many-sorted signatures. Corresponding to
this more liberal notion of translation, one obtains a weakening of intertranslatability,
which has naturally come to be called ‘weak intertranslatability’; it is a weakening of
the third condition in the above result about definitional equivalence. It has recently
been shown by (Washington, 2018) that if two theories are weakly intertranslatable,
then they are Morita equivalent. And conversely, for ‘proper’ theories, Morita equiva-
lence entails weak intertranslatability. (See (Halvorson, 2019) for discussion and full
details on generalized reconstruals.) This provides us with a result that is analogous
to the equivalence of the first and third conditions in the above fact about definitional
equivalence.

23 In addition to thework cited below, see the followingwork onMorita equivalence and translation: Barrett
and Halvorson (2016b, Theorem 4.6), (McEldowney, 2020), (Washington, 2018), and (D’Arienzo et al.,
2020).
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One would still like, however, a condition that corresponds to the second condition.
In particular, one would like to be able to tell, simply by examining a generalized
translation F : T → T ′, whether it is an ‘isomorphism’ in the sense that its existence
implies that T and T ′ areMorita equivalent. The following example illustrates that it is
not the case that the existence of an essentially surjective and conservative generalized
translation implies that the two theories are Morita equivalent. We first note that a
generalized translation can map each sort symbol in a signature � to another single
sort symbol in �′; such a map can be thought of as ‘translating’ quantification over
the former sorts to quantification over the latter. Generalized translations are much
more flexible than this, but this simple kind will serve our purpose in what follows.24

Example 3 Let � be a signature that contains just the two sort symbols σ and σ ′.
Let �′ contain just σ ′. We define the �-theory T to have two axioms; one says that
there are two things of sort σ , the other says that there are two things of sort σ ′. The
�′-theory T ′ says that there are two things of sort σ ′.

We now describe a generalized translation F : T → T ′ that is conservative and
essentially surjective, but does not witness the Morita equivalence of T and T ′. F
maps both of the sorts σ and σ ′ in � to the one sort σ ′ in �′. This map extends to
a map on all �-formulas in a natural manner: it simply changes all quantification
over σ into quantification over σ ′. We note that this is indeed a translation. Both of
the axioms of T translate to the single axiom of T ′. The substitution theorem for
generalized translations (Halvorson, 2019, 5.4.7) immediately implies that if T � φ,
then T ′ � Fφ. Furthermore, F is both conservative and essentially surjective. It is
conservative because T is complete. Suppose that T ′ � Fφ. Then either T � φ or
T � ¬φ; since F is a translation, the latter would imply that T ′ is inconsistent, which
it is not. So T � φ, and hence F is conservative. It is trivial that F is essentially
surjective, since there are no predicate symbols in �′.

Finally, we note that T and T ′ are not Morita equivalent. One can easily verify that
these two theories do not have equivalent categories of models. The model of T has
four automorphisms, while the model of T ′ has only two. Since Morita equivalence
entails categorical equivalence (Barrett & Halvorson, 2016b), this implies that the
two theories are not Morita equivalent, and therefore F should not be considered an
‘isomorphism’; it is not one ‘half of a weak intertranslation’ between them.

This example shows that in order for a generalized translation F : T → T ′ to
witness the Morita equivalence of T and T ′, it must satisfy some third condition
in addition to essential surjectivity and conservativity. One would like to be able to
clearly state this third condition. It is not surprising that there should be three distinct
requirements on F for it to indicate that two theories are Morita equivalent. Morita
equivalence is closely related to categorical equivalence (Hudetz, 2017a). And for a
functor—amap that one can roughly think of as a ‘translation’ between categories—to
realize the categorical equivalence of two categories of models, it must be full, faithful,
and essentially surjective.We have already said above what it is for a functor to be full.
A functor F is faithful if F f = Fg implies that f = g for all arrows f : c1 → c2 and
g : c1 → c2 in C . F is essentially surjective if for every object d in D there exists

24 For preliminaries on many-sorted logic, the reader is encouraged to consult (Halvorson, 2019).
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an object c in C such that Fc ∼= d. A functor F : C → D that is full, faithful, and
essentially surjective is called an equivalence of categories. As we remarked above,
it has recently been shown that a translation F is essentially surjective if and only if
its underlying functor F∗ is full. The conservativity of F corresponds roughly with
the essential surjectivity of the underlying functor; both conditions are capturing a
sense in which the two theories have the ‘same number of models’. And therefore,
this leaves a third condition on F that should correspond to the underlying functor
being faithful. This condition should capture a sense in which T ′ can define the sorts
of T . Note that this is precisely what is failing in the above example; T ′ does not have
the resources to define both of the sort symbols of T . If one could isolate precisely
what this condition is, we would take a step towards better understanding exactly how
Morita equivalence relates to translation.

Can we ‘count’ structure?

We conclude with a remark about the extent to which one can ‘count’ the amount
of structure that a theory posits. In recent years, many metaphysicians, philosophers
of physics, and physicists have adopted a version of the following methodological
principle.

Structural parsimony. All other things equal, we should prefer theories that posit
less structure.

North (2009, p. 64), for example, puts this idea as follows:

This is a principle informed by Ockham’s razor; though it is not just that, other
things being equal, it is best to go with the ontologically minimal theory. It is
not that, other things being equal, we should go with the fewest entities, but that
we should go with the least structure.

There are some fairly straightforward cases where one theory seems to posit ‘more’
structure than another, and we have good reason to prefer the theory that posits less.
The most famous example, as we mentioned above, is the case of Newtonian and
Galilean spacetime. It is standard to claim that the Galilean spacetime theory posits
less structure than itsNewtonian counterpart, and it is also standard to prefer the former
theory.

The structural parsimony principle, however, is only useful if it can be applied in
many (ormost) caseswherewewant to adjudicate between rival theories. For example,
in a case of ‘incomparable’ structure—where two theories posit different structure,
but neither posits less structure than the other—the principle would not help us.25

The way that we often talk about the structure that theories posit, however, suggests
that the structural parsimony principle will be applicable in most cases where we
want to choose between theories. Indeed, our use of phrases like ‘more structure’,
‘less structure’, and ‘amount of structure’ suggests that the amount of structure that
a theory posits can be represented by a real number.26 Other quantities that we talk

25 See (Barrett, 2015a, b) for discussion.
26 For other discussion of ‘amounts of structure’ see (Barrett, 2015a, b, 2018), (Weatherall, 2017), (Bradley,
2020), (Bradley & Weatherall, 2020), and the references therein.
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about using words like ‘amount’, ‘less’, and ‘more’ tend to behave this way. We can
speak, for example, about the ‘amount of money’ that an individual has and often say
that some individual has ‘more’ or ‘less’ money than another. And in that case we can
attach a real number quantity to the amount of money that an individual has; amounts
of money are something that we can genuinely count.

Since we talk about amounts of structure that theories posit in much the same terms,
one might suspect that we can attach a real number to a theory that represents the
‘amount of structure’ that the theory posits and genuinely count amounts of structure.
If so, then the structural parsimony principle would be applicable quite generally. If
two theories posit different structure, the principle would always weigh in favor of
one or the other of them. And the kind of situation mentioned above—in which two
theories posit ‘incomparable’ amounts of structure—would be impossible. There is
already some compelling evidence that such cases are possible. For example, there is
a sense in which Galilean and Minkowski spacetimes posit incomparable amounts of
structure and in which symplectic and metric spaces posit incomparable amounts of
structure (Barrett, 2015a, b).

Our main example provides another case of this. Recall that a binary relation ≤ on
a set X is a partial order if it is reflexive (i.e. x ≤ x for all x), antisymmetric (i.e. if
x ≤ y and y ≤ x , then x = y for all x and y), and transitive. It is a total order if,
in addition, any two elements are comparable (i.e. x ≤ y or y ≤ x for all x and y).
In what follows we will employ the following setup. We will let X be a set equipped
with a binary relation ≤. We will think of the elements of X as the possible ‘amounts
of structure’ that theories might posit and the relation ≤ as capturing the ‘is no more
structure than’ relation. We will then let s be a map that assigns to each theory some
element of X , which we think of as the amount of structure that the theory posits. We
can then ask how these amounts of structure behave. For example, if X is R and ≤ is
the standard total order on R, we would be attaching a real number to each theory that
quantifies its amount of structure. The following proposition, however, shows that ≤
cannot behave like the standard ordering on the real numbers.

Proposition 5 Let X be a set equipped with a binary relation ≤ and suppose that s is
a map from first-order theories to X. Then the following three conditions cannot be
jointly maintained:

1. ≤ is a total order.
2. If T+ is a conservative extension of T and s(T+) ≤ s(T ), then T is definitionally

equivalent to T+.
3. If T and T ′ are definitionally equivalent, then s(T ) = s(T+).

Proof We know by Proposition 2 and Theorem 3 that T1 is definitionally equivalent to
a conservative extension T+

1 of T2 and T2 is definitionally equivalent to a conservative
extension T+

2 of T1. By condition 3, s(T
+
1 ) = s(T1) and s(T

+
2 ) = s(T2). Suppose that

s(T1) ≤ s(T2). This implies that s(T+
1 ) ≤ s(T2). But T

+
1 is a conservative extension

of T2, so condition 2 implies that T+
1 is definitionally equivalent to T2. That cannot be

the case, since if it were, T2 and T1 would be definitionally equivalent, contradicting
Theorem 1. This implies that it is not the case that s(T1) ≤ s(T2). One shows in
precisely the same manner that it is not the case that s(T2) ≤ s(T1). So ≤ is not a total
order, contradicting condition 1. ��
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The first condition captures the idea that we can genuinely ‘count’ the structure
that a theory posits. Every theory T has an associated ‘amount of structure’ that is
represented by the element s(T ) in the totally ordered set X . The totally ordered set X
could, for example, be the real numbers R with their standard ordering, in which case
we would be ‘counting’ amounts of structure in the most natural way possible. Since
the three conditions cannot all be the case, if there are compelling arguments for the
second and third conditions, we should reject the first. And indeed, this is the case.

The argument for condition 2 is straightforward. Suppose that T+ is a conservative
extension of T . That means that T+ and T entail precisely the same sentences in the
language of T . If T+ and T are going to be inequivalent, therefore, the difference
between them must concern something that T+ says using the conceptual resources
that are available to it, but not to T . The requirement that s(T+) ≤ s(T ), however, rules
out this possibility. T+ posits less structure than or the same amount of structure as T
does, so T+ does not have access to more conceptual resources than those available
to T . This means that the two theories must actually be saying the same thing, and so
they should be definitionally equivalent.27 And condition 3 is intuitive. If two theories
are definitionally equivalent, then each can define or ‘build’ the structures of the other.
So in a strong sense they actually posit same structure, not merely the same amount of
structure.We therefore have compelling arguments for the second and third conditions,
so we should reject the first: structure cannot be counted.

The basic idea behind this result is the following. The theories T1 and T2 posit
incomparable amounts of structure, in the sense that either theory can be obtained
from the other by ‘adding’ some structure, but the two are not equivalent. This is
what was shown in the discussion surrounding Proposition 2. T1 is (up to definitional
equivalence) a conservative, but not definitional, extension of T2, and T2 is (up to
definitional equivalence) a conservative, but not definitional, extension of T1. This
implies that we can obtain T1 from T2 by simply ‘adding’ structure to T1, along with
some new axioms dictating how that new structure behaves. There are theories with
incomparable amounts of structure, so the relation ≤ is not total.

In addition to not being totally ordered by ‘amount of structure’, our example
demonstrates that theories cannot even be partially ordered by the amount of structure
they posit.

Proposition 6 Let X be a set equipped with a binary relation ≤ and suppose that s is
a map from first-order theories to X. Then the following three conditions cannot be
jointly maintained:

1. ≤ is a partial order.
2. If T+ is a conservative extension of T and s(T+) ≤ s(T ), then T and T+ are

definitionally equivalent.
3. If there is an essentially surjective translation from a theory T to a theory T ′, then

s(T ′) ≤ s(T ).

27 It is important to mention that this same kind of argument would go through even if one moved to
a more general standard of equivalence like Morita equivalence. In that case, the equivalence relation in
the consequent of condition 3 would simply be changed to Morita equivalence, rather than definitional
equivalence. The same argument given in our proof would then imply that T1 and T2 are Morita equivalent,
and that would contradict Theorem 2.
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Proof Suppose for contradiction that conditions 1, 2, and 3 are all true. Consider our
two theories T1 and T2. Condition 1 implies that ≤ is antisymmetric, so condition 3
and Theorem 4 entail that s(T1) = s(T2). Theorem 3 and Proposition 2 imply that
there is a theory T+

2 that is a definitional extension of T2 and a conservative extension
of T1. Since T

+
2 is trivially definitionally equivalent to T2, condition 3 and Lemma 1

imply that s(T+
2 ) = s(T2). So s(T+

2 ) = s(T1). Condition 2 then implies that T+
2 and

T1 are definitionally equivalent. Since T
+
2 is a definitional extension of T2, it must be

that T1 and T2 are definitionally equivalent, which contradicts Theorem 1. ��
We take a moment here to unravel what Proposition 6 is telling us. The result

is closely related to Proposition 5. Condition 1 again captures the idea that we can
‘count’ the structure that a theory posits, but in a weaker sense than in the previous
proposition. The partially ordered set X could still be the real numbers R with their
standard ordering, but condition 1 is more general than that, however, since R is
totally ordered. Condition 1 does not require that. Conditions 2 and 3 are then natural
requirements about how this map s should behave, and they contradict the fact that ≤
is antisymmetric.

Condition 2 is the same as in Proposition 5, and condition 3 is slightly stronger
than its counterpart in Proposition 5. But arguments for condition 3 have already been
given above in the course of arguing for Claim 2. As that claim states, an essentially
surjective translation F : T → T ′ captures a sense in which T has all of the structure
of T ′. This means that T has at least as much structure as T ′, and so, insofar as there
is a map s that encodes amounts of structure in terms of real numbers, s(T ′) ≤ s(T ).
Claim 2 therefore implies condition 3 in Proposition 6. And moreover, even without
Claim 2, the discussion surrounding Proposition 4 showed that all of the tools that
have recently been used to compare amounts of structure between theories imply that
when there is an essentially surjective translation F : T → T ′, s(T ′) ≤ s(T ).

Now one might try to resist condition 3 in Proposition 6—and, for that matter, our
earlier Claim 2—by claiming once again that a specification posits more structure
than the original theory did; adding axioms does add structure. Recall that this was a
crucial premise in our argument for Claim 2. One might at this point be inclined to
revisit this idea in order to resist the conclusion that we are drawing from Proposition
6—that structure cannot be partially ordered, much less ‘counted’. We argued above
that this thought is not in line with the standard understanding of structure that is
present in the literature. But we can here go one step further. If specifications posit
more structure than the original theory did, then there is a pair of theories that each
posit more structure than the other. The basic idea behind this point is simple. There
exist essentially surjective translations back and forth between our theories T1 and T2.
Proposition 3 implies then that T1 is definitionally equivalent to a specification of T2
and that T2 is definitionally equivalent to a specification of T1. Insofar as definitionally
equivalent theories posit the same amount of structure, then if specifications positmore
structure than the original theory, this would imply that T1 posits more structure than
T2 and T2 posits more structure than T1.

We make this idea precise with the following result. Recall that we say that x < y
just in case x ≤ y and x �= y.
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Proposition 7 Let X be a set equipped with a binary relation ≤ and suppose that s is
a map from first-order theories to X. Then the following three conditions cannot be
jointly maintained:

1. ≤ is a partial order.
2. If T ′ is a specification of T that is not logically equivalent to T , then s(T ) < s(T ′).
3. If two theories T and T ′ are definitionally equivalent, then s(T ) = s(T ′).
Proof Consider our pair of theories T1 and T2. Theorem 4 implies that there is an
essentially surjective translation H : T1 → T2. Proposition 3 then implies that there
is a �1-theory T H

1 that is a specification of T1 and definitionally equivalent to T2.
It cannot be logically equivalent to T1, because that would imply that T1 and T2 are
definitionally equivalent, and we already know that they are not. So conditions 2 and
3 imply that s(T1) < s(T H

1 ) and s(T H
1 ) = s(T2). This means that s(T1) < s(T2).

Similarly, by Theorem 4 there is a �2-theory T K
2 that is a specification of T2 and

definitionally equivalent to T1. Conditions 2 and 3 again imply that s(T2) < s(T K
2 )

and s(T K
2 ) = s(T1), so s(T2) < s(T1). Now s(T1) is both less than and greater than

s(T2), which contradicts condition 1. ��
The basic idea behind this result is the following. Conditions 1 and 3 are the same

as in Proposition 5. Condition 2 is the idea that a specification—that is not logically
equivalent to the original theory, perhaps obtained by adding an axiom that was not
a theorem of the original theory—posits more structure than the original theory did.
Proposition 7 demonstrates that these three conditions cannot all be the case. If con-
ditions 2 and 3 hold, then there are theories T1 and T2 that each posit more structure
than the other. This provides a compelling reason to think that adding only axioms
and no new vocabulary to a theory does not add structure. And more to the point,
it shows that one cannot resist the conclusion that we are drawing from Proposition
6—namely, that structure cannot be ‘counted’ or even partially ordered—by claiming
that adding axioms adds structure. If adding axioms adds structure, then insofar as
definitionally equivalent theories posit the same amount of structure, we see that once
again structure cannot be counted.

Given our discussion surrounding Claim 2, we of course find it more natural to think
of the relation ≤ in Proposition 7 as ordering theories by their logical strength, rather
than by the amount of structure that they posit. In recent years logical strength has been
put forward by philosophers of logic variously as both a vice and a virtue of theories.
Williamson (2017, p. 336), for example, thinks that logical strength is a virtue among
logical theories, just as it is among scientific theories, since stronger theories are “more
specific or informative”. In the case of scientific theories, Williamson writes that we
consider strength a virtue because it “provide[s] a minimal threshold of informative-
ness below which theories do not even come up for serious abductive evaluation. We
want scientific theories to inform us about their subject matters; weak theories do too
little of that to give us what we want. Furthermore, strength contributes to explanatory
power […], the capacity to bring our miscellaneous information under generalizations
that unify it in illuminating ways” (Williamson, 2017, p. 336).28 (Hjortland, 2017)

28 Williamson does not consider logical theories in different languages, and the proof of our Proposition
7 does require this. But the way we have generalized the proposal to different languages is by appeal to
condition 3, which is a perfectly intuitive desiderata on any notion of logical strength.
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argues that strength is a vice. (Russell, 2019) argues that it is neither a virtue nor a
vice. Proposition 7 here yields a cautionary remark about using logical strength to
decide between theories: vice or virtue, it cannot be counted in the way that we might
have thought. The relation ‘has no more logical strength than’ does not partially order
theories. This means that it is somewhat misleading to talk about theories as having
‘more’ or ‘less’ logical strength than others.

The previous three propositions show that theories are not totally or even partially
ordered by the ‘amount of structure’ that they posit. Amounts of structure are therefore
not something that we can genuinely count, or even order in the most natural way. This
isolates an important difference between the structural parsimony principle and other
‘ontological’ parsimony principles that license us to prefer the theory that commits
to fewer entities. It is natural to suppose that we can genuinely count—and therefore
attach a real number quantity to—the number of entities (or the number of kinds of
entities) that a theory is committed to. We cannot do so with structure. It is important
to emphasize that we still can, however, compare structure between theories, insofar
as what mean by the phrase ‘X has less structure than Y ’ is just that Y has all of the
structures that X has, and possibly others in addition. And indeed, this understanding
of the relation ‘has less structure than’ captures the kind of cases that motivated us to
compare amounts of structure in the first place. Newtonian spacetime, for example, has
all of the structure that Galilean spacetime has, but it also has a preferred standard of
rest.29Wecan look to translations between theories to assesswhether this relation holds
between them. But as Propositions 5, 6, and 7 demonstrate, this understanding of the
relation ‘posits less structure than’ does not end up ordering theories by the amount of
structure that they posit. Much care must therefore be taken when comparing structure
between theories.

7 Conclusion

Onemight wonder how these purely logical results come to bear on the current debates
about structure and equivalence in philosophy of science. Real scientific theories are,
of course, much more complicated than theories in first-order logic. We therefore
should be careful not to assume that the ‘category of all scientific theories’ has all the
features that the category of first-order theories has. Nonetheless, we should take ‘no
go’ results like the ones we have presented here seriously. If the category of first-order
theories fails to have some simple feature—like the Cantor–Bernstein or co-Cantor–
Bernstein property—then that gives us some reason to doubt that the category of all
scientific theories will have that feature.

There is, however, an important question about how prevalent counterexamples to
the Cantor–Bernstein and co-Cantor–Bernstein properties of theories are. One won-
ders whether all such counterexamples are pathological in some sense that would
prevent them from occurring in the case of real scientific theories. On the one hand,
if counterexamples are rare, then our results here are more surprising. If they are not

29 This is the concept that (Barrett, 2021) investigates, and arguably the one that bears the closest relationship
to symmetry (Barrett, 2018).
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rare, then one has reason to suspect they will arise for scientific theories as well, and
therefore these results will have to be taken seriously when reasoning about structure
and equivalence in physics. We conclude by contributing two further results. Our aim
is to begin a discussion of how common counterexamples like the one presented above
are.

In particular, we show that if a pair of theories is a counterexample to either the
Cantor–Bernstein or co-Cantor–Bernstein property, then both theories must, roughly,
have infinitely many models. For convenience, we will slightly abuse our earlier ter-
minology and say that a pair of theories (T1, T2) has the Cantor–Bernstein property
if the existence of conservative translations T1 → T2 and T2 → T1 implies that T1
and T2 are intertranslatable. We will say that (T1, T2) has the co-Cantor–Bernstein
property if the existence of essentially surjective translations T1 → T2 and T2 → T1
implies that T1 and T2 are intertranslatable.

We have the following two results, whose proofs have been placed in the appendix.
We say that a category C is object-finite just in case it has only finitely many objects
up to isomorphism.

Theorem 6 If T1 and T2 are theories such that Mod(T1) andMod(T2) are object-finite,
then (T1, T2) has the Cantor–Bernstein property.

Theorem 7 If (T1, T2) does not have the co-Cantor–Bernstein property, then there is
a cardinal number κ such that T1 and T2 have infinitely many non-isomorphic models
of size κ .

These results do not suggest that counterexamples like ours are all pathological, in
the sense that they can only occur in strange cases that one would not expect to arise
for real scientific theories. In particular, most fundamental theories in physics do have
infinitely many models. But on the other hand, the results do begin to explain why it
is difficult to come up with counterexamples to the Cantor–Bernstein and co-Cantor–
Bernstein properties of theories. If theories are complicated enough to have infinitely
many non-isomorphic models, then it will most likely be difficult to prove that such
theories are mutually translatable in the relevant sense. For example, (Andréka et al.,
2005), who give a simple example of two theories that violate the Cantor–Bernstein
property, construct the relevant conservative translations in away that is quite complex.
There is certainly room for more work on these questions, but at present it seems that
counterexamples like the one considered in this paper must be taken seriously when
theorizing about structure and equivalence.

Acknowledgements Thanks to Laurenz Hudetz and a small collection of anonymous referees for helpful
comments.

Appendix

The purpose of this appendix is to provide proofs of Theorems 6 and 7. We will begin
by the Cantor–Bernstein property. First, we show that if T1 or T2 has only finitelymany
non-isomorphic models, then (T1, T2) has the Cantor–Bernstein property. We begin
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with a result that is conceptually close towhat (Makkai&Reyes, 2006) call “conceptual
completeness”.30 They use sophisticated category theory to prove it, however, and the
following result ismore streamlined, in particular because it relies on a recent corollary
to Beth’s Theorem (Barrett, 2021, Prop. 2).

Proposition 8 Suppose that F : T1 → T2 is a translation and F∗ : Mod(T2) →
Mod(T1) is one half of an equivalence of categories. Then F is one half of an inter-
translation.

Proof If F∗ is one half of an equivalence of categories, then F∗ is full. By Proposition
2 of (Barrett, 2021), F is essentially surjective. F∗ is also essentially surjective. By
Proposition 6.6.17 of (Halvorson, 2019) F is conservative.

Since it is essentially surjective and conservative, Proposition 4.5.27 of (Halvorson,
2019), implies that F is one half of an intertranslation. ��

We say that a categoryC is object-finite just in case it has only finitelymany objects
up to isomorphism. We say that C is totally-finite if it has finitely many objects up to
isomorphism, and also finitely many arrows.

Lemma 2 If Mod(T ) is object-finite, then for each model M of T there is a sentence
φM such that M � φM, but N � ¬φM for all models N of T that are not isomorphic
to M.

Proof Let T be a theory. If Mod(T ) is object-finite then the Löwenheim-Skolem
theorem implies that every model of T has finite cardinality. From this it follows that
there are only finitely many arrows between any pair of objects in Mod(T ). Let M
be a model of T . Choose one model Ni from each of the finitely many isomorphism
classes of model that are disjoint from the isomorphism class of M . Since for finite
structures, elementary equivalence implies isomorphism, it follows that for each Ni ,
there is a sentence φi such that M � φi and Ni � ¬φi . Now let φM be the conjunction
φ1 ∧ . . . ∧ φn . It follows immediately that M � φM but Ni � ¬φM for each i . ��
Proposition 9 Let T1 bea theory such thatMod(T1) is object-finite and let F : T1 → T2
be a translation. If F is conservative then F∗ : Mod(T2) → Mod(T1) is essentially
surjective.

Proof We prove the contrapositive. If F∗ : Mod(T2) → Mod(T1) is not essentially
surjective, then there is a model M of T1 that is not isomorphic to any model of the
form F∗(N ) where N is a model of T2. By Lemma 2, there is a sentence φM such
that M � φM but F∗(N ) � ¬φM for all models N of T2. Hence N � F(¬φM ) for
all models N of T2, so T2 � F(¬φM ). But clearly it is not the case that T1 � ¬φM .
Therefore F is not conservative. ��

LetC and D be categories with respective object setsC0 and D0. Let [C0] and [D0]
be the corresponding sets of equivalence classes of isomorphic objects. Each functor

30 What they show is deeply wrapped up in category-theorical language: if P is a pretopos and I : P → S
is a logical functor such that I∗ is an equivalence of categories, then so is I . Strictly speaking, their result
does not imply the following proposition, because our theory T does not have to correspond to a pretopos.
But the two are conceptually close to one another.
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F : C → D induces a function F0 : [C0] → [D0], and F0 is surjective iff F is
essentially surjective. If F : C → D and G : D → C are both essentially surjective,
then the Cantor–Bernstein theorem for finite sets implies that F0 is a bijection.

Lemma 3 Let F be a finite set, let f : F → N be a function, and let φ : F → F be
a bijection such that f (x) ≤ f (φ(x)) for all x ∈ F. Then f (x) = f (φ(x)) for all
x ∈ F.

Proof Wesketch the proof. The function f corresponds to afibration of F overN. Since
φ is a bijection, the size of the fibers remain constant, i.e., | f −1(n)| = |( f ◦φ)−1(n)|.
Since φ is monotonic, it cannot move an element to a lower fiber. Thus no element
can be moved out of the highest fiber, nor the next highest fiber, etc. ��
Proposition 10 LetC and D be totally-finite categories. If there are faithful, essentially
surjective functors F : C → D and G : D → C, then C and D are equivalent
categories. In fact, F itself is one half of an equivalence.

Proof By the remark preceding Lemma 3, F0 : [C0] → [D0] is a bijection. Since F
is automatically faithful, it will suffice to show that F is full. For simplicity, we may
henceforth replace C and D with the corresponding skeletal categories.

Consider the (finite) set C0 × C0 and the function f : C0 × C0 → N that assigns
the cardinality of the corresponding hom set. That is, f (a, b) = |hom(a, b)|. Let
g : D0 × D0 → N be the corresponding function for D. Since F is faithful, it induces
a bijection η : C0 → D0 such that

f (a, b) ≤ g(η(a), η(b)).

And since G is faithful, it induces a bijection θ : D0 → C0 such that

g(a, b) ≤ f (θ(a), θ(b)).

If we let φ = θ ◦ η then

f (a, b) ≤ f (φ(a), φ(b)),

for all a, b ∈ C0. By the above lemma, f (a, b) = f (φ(a), φ(b)), and it follows that
F is full. ��

We now have the following result. In brief, it says that in order for a pair of theories
to be a counterexample to the Cantor–Bernstein property, the theories must have (up
to isomorphism) infinitely many models.

Theorem 6 Let T1 and T2 be theories such thatMod(T1) andMod(T2) are object-finite.
Then (T1, T2) has the Cantor–Bernstein property.

Proof If Mod(T ) is object-finite then the Löwenheim-Skolem theorem implies that
every model of T has finite cardinality. From this it follows that there are only finitely
many arrows between any pair of objects in Mod(T ). So T is totally-finite. So we
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know that both of these categories of models for T1 and T2 are totally-finite. Let
F : T1 → T2 and G : T2 → T1 be conservative translations. By Proposition 9, F∗
and G∗ are essentially surjective. They are trivially faithful. Proposition 10 implies
that the two categories of models are equivalent, and that F∗ and G∗ are equivalences.
Proposition 8 then implies that F is one half of an intertranslation. ��

We now turn to the co-Cantor–Bernstein property. We will show that if either T1
or T2 has only finitely many models of some fixed cardinality, then (T1, T2) has the
co-Cantor–Bernstein property. As a warm-up result, we note that complete theories
always have the co-Cantor–Bernstein property.

Proposition 11 If T1 or T2 is complete, then (T1, T2) has the co-Cantor–Bernstein
property.

Proof As we noted above in Example 3, if T1 is complete, then every translation
F : T1 → T2 is conservative. So if F : T1 → T2 is essentially surjective, then F is
one half of an intertranslation. ��

For a theoryT and a cardinal numberκ , let I (T , κ)be the number of non-isomorphic
models of T of cardinality κ .

Proposition 12 If F : T1 → T2 is essentially surjective, then I (T2, κ) ≤ I (T1, κ)

then for any cardinal number κ .

Proof Recall that the dual functor F∗ is always faithful for single-sorted theories. If
F : T1 → T2 is essentially surjective, then F∗ is also full (Halvorson, 2019, Prop
6.6.13). In particular, for any models M, N of T2, if F∗(M) is isomorphic to F∗(N ),
then M is isomorphic to N . Now fix a cardinal number κ , and let [Mod(Ti )]κ be
the set of isomorphism classes of models of Ti of cardinality κ . Then F∗ induces
a one-to-one mapping from [Mod(T2)]κ into [Mod(T1)]κ . This immediately implies
that I (T2, κ) ≤ I (T1, κ). ��
Proposition 13 Suppose that T2 has finitely many non-isomorphic models of each
cardinality. If F : T1 → T2 and G : T2 → T1 are essentially surjective, then F∗ and
G∗ are both equivalences of categories.

Proof It will suffice to show that F∗ is essentially surjective, since F∗ is guaranteed
to be full because F is essentially surjective (Halvorson, 2019, Prop 6.6.13). By the
previous proof, G∗ induces an injection of [Mod(T1)]κ into [Mod(T2)]κ . Since the
latter is finite, so is the former. Since F∗ is an injection of one finite set into a not-
larger finite set, it follows that F∗ is bijection. Therefore F∗ is essentially surjective:
every model of T1 is isomorphic to a model of the form F∗(N ) where N is a model
of T2. ��

We now have our final result. In brief, it says that in order for a pair of theories to
be a counterexample to the co-Cantor–Bernstein property, the theories must have (up
to isomorphism) infinitely many models of some fixed cardinality.
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Theorem 7 If (T1, T2) does not have the co-Cantor–Bernstein property, then there is
a cardinal number κ such that T1 and T2 have infinitely many non-isomorphic models
of size κ .

Proof We prove the contrapositive. Suppose that for every cardinal κ , either T1 or T2
has only finitelymany non-isomorphicmodels of size κ . And suppose for contradiction
that (T1, T2) violates the co-Cantor–Bernstein property. This means that there must
be essentially surjective translations F : T1 → T2 and G : T2 → T1. Note that
Proposition 12 now implies that if either T1 or T2 has only finitely many models of
size κ , then both of them do. So it must be that for every cardinal κ both T1 and T2
have only finitely many non-isomorphic models of size κ . By Proposition 13, F∗ and
G∗ are equivalence of categories. In particular, F∗ is essentially surjective, and by
Proposition 6.6.17 of (Halvorson, 2019), F is conservative. Therefore, by Proposition
4.5.27 of (Halvorson, 2019), F is one half of an intertranslation. ��
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