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B S T R A C T

asgupta (2015) has recently put forward a novel argument, which he calls the ‘curvature argument’, that aims to show that Galilean spacetime is not an ideal
etting for our classical theory of motion. This paper examines the curvature argument and argues that it is not sound. The discussion yields a remark about the
onditions under which a ‘symmetry argument’ demonstrates that a particular spacetime is a non-ideal setting for our theory of motion.
. Introduction

In its modern gloss, Leibniz’s ‘boost argument’ demonstrates that
ewtonian spacetime is not an ideal spacetime setting for our classical

heory of motion. Newtonian spacetime famously comes equipped with
n ‘absolute standard of rest’. That is, it comes equipped with enough
tructure to distinguish between trajectories that are at absolute rest and
rajectories that are not.

The boost argument proceeds as follows.1 Suppose that we see some
ody that is free of forces and we want to know whether it is at rest
r moving at some constant but non-zero velocity. We recognize, as
llustrated in the figure below, that there are two theories about this
ree body that are both compatible with all of our observations. (Note
hat the dotted arrows in the figure represent the standard of rest that
ewtonian spacetime is equipped with; ‘vertical’ trajectories are at rest.
he solid arrows represent the trajectory of the body according to the
heory.) The theory 𝑇1 says that the body is at rest. The theory 𝑇2 says
hat the body is moving at a constant non-zero velocity. One often says
hat this second theory has been obtained from the first by ‘boosting’
he velocity of the body.

The boost argument begins from the following three premises about
hese two theories.

✩ Acknowledgments: Thanks to JB Manchak, Jeff Barrett, Neil Dewar, David Malament, and two anonymous referees for helpful comments and discussion.
E-mail address: thomaswbarrett@ucsb.edu.

1 See for example Geroch (1972, p. 34), and also the presentations in Dasgupta (2015) and Maudlin (2012).

P1. 𝑇1 asserts that the body is at rest.
P2. 𝑇2 asserts that the body is not at rest.
P3. We have no reason to prefer 𝑇1 over 𝑇2, or vice versa.

The claims P1 and P2 follow immediately from the way that the two
theories have been described. For P3, we note first that the empirical
data do not distinguish between these two theories. And moreover, we
have no non-empirical reasons to prefer one of the theories over the
other. They are, for example, equally parsimonious.

It is standard to use these three premises – in combination with
some other supplementary premises – to conclude that there is some-
thing ‘‘unscientific and ‘bad’’’ about the Newtonian standard of rest
(Friedman, 1983, p. 112). Different philosophers argue for different
precise senses in which it is bad. Some claim that the Newtonian
standard of rest is dispensable (Friedman, 1983), others that it is
undetectable (Dasgupta, 2015, 2016), and yet others that it is surplus
or redundant (Earman, 1989; North, 2009). For our purposes, however,
the important thing is that there is something wrong with absolute rest
and the premises P1, P2, and P3 play the crucial role in showing that.
While there is disagreement about the exact kind of ‘badness’ that the
concept of absolute rest exhibits, there is nonetheless a general con-
sensus that it is bad in some sense, and therefore that some argument
relying on P1, P2, and P3 suffices to show that Newtonian spacetime is
not an ideal spacetime setting for our classical theory of motion.

Dasgupta (2015, p. 614–15) has recently put forward a novel ar-
gument, which he calls the curvature argument, that aims to show
that Galilean spacetime – the spacetime that is obtained from Newtonian
spacetime by excising the Newtonian standard of rest – is also not an
ideal setting for our classical theory of motion. It too comes equipped
with some structure that is unscientific and bad, in the same sense
(whatever that may be) as the Newtonian standard of rest was.

The curvature argument proceeds in a similar manner to the boost
argument. Suppose that we see some body that is moving free of
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forces and we want to know whether this body is traversing a curved
trajectory through spacetime or whether it is traversing a straight
trajectory through spacetime. Dasgupta (2015, p. 615) describes the
following two theories about this body that are compatible with all of
our observations:

𝑇1 picks out the straight trajectories as being ‘privileged’; that is, as
being those trajectories that are followed by bodies in the absence of
force. But now pick a curved trajectory [the dotted line in the figure
below], and take the set of all trajectories that are unaccelerated
relative to it. According to 𝑇2, they are the privileged trajectories
followed by bodies in the absence of force, and bodies under the
influence of force follow trajectories that are curved relative to those
privileged ones (where the degree of curvature is again proportional
to the force). Now, imagine that we see a body free of force. What
does this indicate? According to 𝑇1, it indicates that the body is
making a straight trajectory; according to 𝑇2, it indicates that it
is making a certain kind of curved trajectory. So, if one does not
know whether 𝑇1 or 𝑇2 is true, and all one sees is a body free of
force, one will not know whether it is moving along a straight or
curved trajectory! Assume now that we cannot know whether 𝑇1 or
𝑇2 is true. Then, we cannot detect whether a body is moving along
a curved or straight trajectory.

The theory 𝑇1 is our standard account – classical physics set in
Galilean spacetime – of which trajectories through spacetime are tra-
versed by free bodies. The theory 𝑇2 presents an alternative account.
It begins by picking some curved trajectory 𝛾 through spacetime, like
the dotted line in the figure below, and then it asserts that free bodies
traverse those trajectories that are non-accelerating relative to 𝛾. So if
we see a free body, we are not sure whether 𝑇1 is true and that body
is traversing a straight trajectory through spacetime or whether 𝑇2 is
true and that body is traversing a curved trajectory. This is meant to
be precisely like the situation in Newtonian spacetime, where we could
not say whether the body was at rest or moving at a constant non-zero
velocity.

Like the boost argument, Dasgupta’s curvature argument turns on
he following three premises.

P1. 𝑇1 asserts that the body is traversing a straight trajectory.
P2. 𝑇2 asserts that the body is traversing a curved trajectory.
P3. We have no reason to prefer 𝑇1 over 𝑇2, or vice versa.

Insofar as one thinks that the boost argument shows that there is
omething wrong with the Newtonian standard of rest, one should also
hink that these three premises (if true) show that there is something
rong with the Galilean standard of ‘straightness’. The curvature argu-
ent turns on exactly the same core premises as the boost argument
id. If we agree that the boost argument shows that Newtonian space-
ime is not an ideal setting for our classical theory of motion, then
o long as its premises are true, the curvature argument will show
hat Galilean spacetime is not an ideal setting for our classical theory
f motion either. It too comes equipped with some structure that is
 (
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nscientific and bad in the same sense as the Newtonian standard of
est was.2

My aim in what follows is to argue that the curvature argument
s of an importantly different character than the boost argument. In
articular, it is not sound. Depending on how one precisely formulates
he theory 𝑇2, either P2 is false or P3 is false. In brief, if one formulates
2 with enough structure to make P2 true, then P3 is false because
2 posits a piece of ‘surplus structure’ and therefore strictly ‘more
tructure’ than 𝑇1. This discussion will yield a broader remark about the
onditions under which a symmetry argument, like the boost argument
r the curvature argument, demonstrates that a particular spacetime is
non-ideal setting for a theory of motion.

. The curvature argument

We begin by presenting the curvature argument in detail. In partic-
lar, we need to carefully formulate the two theories 𝑇1 and 𝑇2. Since it
s the more straightforward of the two, we begin with 𝑇1, the standard
lassical theory of motion set in Galilean spacetime.

Spacetime theories begin by specifying a smooth, connected, four-
imensional manifold 𝑀 .3 Each point 𝑝 ∈ 𝑀 represents the location of
n ‘event’ in spacetime. Galilean spacetime is the tuple (R4, 𝑡𝑎, ℎ𝑎𝑏,∇).
he smooth tensor fields 𝑡𝑎 and ℎ𝑎𝑏 and the derivative operator ∇ are
efined as follows.

𝑡𝑎 = 𝑑𝑎𝑥
1

𝑎𝑏 =
(

𝜕
𝜕𝑥2

)𝑎( 𝜕
𝜕𝑥2

)𝑏
+
(

𝜕
𝜕𝑥3

)𝑎( 𝜕
𝜕𝑥3

)𝑏
+
(

𝜕
𝜕𝑥4

)𝑎( 𝜕
𝜕𝑥4

)𝑏

∇ is the coordinate derivative operator on R4

Here 𝑑𝑎𝑥𝑖 is the differential of the standard coordinate function 𝑥𝑖 ∶
R4 → R and

( 𝜕
𝜕𝑥𝑖

)𝑎 is the standard 𝑖th coordinate vector field on R4.
The coordinate derivative operator ∇ on R4 is defined to be the unique
derivative operator that satisfies ∇𝑎

( 𝜕
𝜕𝑥𝑖

)𝑏 = 𝟎 for each 𝑖 = 1,… , 4.4
e note that ∇ is flat, in the sense that its curvature field 𝑅𝑎

𝑏𝑐𝑑 = 𝟎
verywhere on R4.

These geometric structures on Galilean spacetime are interpreted as
ollows. The field 𝑡𝑎 is a temporal metric. It assigns a temporal length to
ectors, and defines a preferred partitioning of Galilean spacetime into
imultaneity slices. The field ℎ𝑎𝑏 is a spatial metric. Given a vector 𝜉𝑎,
ne can use ℎ𝑎𝑏 to (indirectly) assign a spatial length to it. Finally, and
ost importantly for our purposes, the derivative operator ∇ endows

R4 with a standard of constancy. It specifies which trajectories through
Galilean spacetime are geodesics, or in other words, ‘straight’. A curve
𝛾 ′ ∶ R → R4 through Galilean spacetime with tangent field 𝜉𝑎 is a
eodesic just in case 𝜉𝑛∇𝑛𝜉𝑎 = 𝟎, i.e. it is non-accelerating relative
o ∇. The derivative operator ∇ is compatible with 𝑡𝑎 and ℎ𝑎𝑏, in the
ense that ∇𝑛𝑡𝑎 = 𝟎 and ∇𝑛ℎ𝑎𝑏 = 𝟎. This simply means that, as one
hould expect of a classical spacetime, the temporal and spatial metrics
re ‘constant’. We note, however, there is in general more than one
erivative operator that is compatible with 𝑡𝑎 and ℎ𝑎𝑏. This is unlike
he case in which a manifold has a non-degenerate metric on it, like
relativistic spacetime does. In that case there is a unique derivative

perator compatible with the metric.
We have described the background spacetime setting, but we also

eed to state the equation of motion that 𝑇1 employs. If a particle has

2 Dasgupta intends for this to be an argument against a view he calls
Galilean substantivalism’, ‘‘the view that Galilean space–time exists, and has
his structure, independently of its material constituents’’ (Dasgupta, 2015,
. 613). If the curvature argument is sound, it would refute Galilean substan-
ivalism by denying that second clause; spacetime would not have the kind of
straightness’ structure that Galilean spacetime posits.

3 The reader is invited to consult (Malament, 2012) for details on the
reliminaries that follow.

4 For proof that the coordinate derivative operator is unique see Malament

2012, Prop. 1.7.11).
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mass 𝑚, then 𝑇1 says that it will traverse a smooth timelike curve whose
tangent field 𝜉𝑎 satisfies 𝑡𝑎𝜉𝑎 = 1 and

𝑎 = 𝑚𝜉𝑛∇𝑛𝜉
𝑎 (1)

where 𝐹 𝑎 is the vector field representing the net force acting on the
particle. The equation of motion (1) immediately implies that massive
bodies that are free of forces travel along trajectories that are geodesics
relative to ∇. So imagine that we are observing some body that is free
of forces, and recall the premise P1 from the curvature argument.

P1. 𝑇1 asserts that the body is traversing a straight trajectory.

The premise P1 is true. The standard theory 𝑇1 does say that massive
bodies experiencing no net force will traverse geodesics, or ‘straight
trajectories’, through spacetime.

The theory 𝑇2 requires a bit more work to make precise. In order
to simplify matters, we will work with a representative case of 𝑇2 by
picking one particular smooth curve 𝛾 ∶ R → R4. We consider the curve
𝛾 ∶ R → R4 defined by

𝛾(𝑡) = (𝑡, sin(𝑡), 0, 0)

in standard coordinates on R4. This choice of 𝛾 is perfectly represen-
tative – indeed, it matches the situation depicted in the figure above
– and one imagines that it results in a canonical example of the kind
of theory 𝑇2 that Dasgupta has in mind. We will use 𝛾 to determine
the new standard of non-acceleration for 𝑇2. One can easily compute
in standard coordinates that the tangent field 𝜆𝑎 and four-acceleration
field 𝜆𝑛∇𝑛𝜆𝑎 of 𝛾 are the following.

𝜆𝑎 =
(

𝜕
𝜕𝑥1

)𝑎
+ cos(𝑥1)

(

𝜕
𝜕𝑥2

)𝑎
𝜆𝑛∇𝑛𝜆

𝑎 = − sin(𝑥1)
(

𝜕
𝜕𝑥2

)𝑎

ince the four-acceleration of 𝛾 is non-zero, it is indeed that case that 𝛾
s a ‘curved’ trajectory through Galilean spacetime, as Dagupta requires.

Now Dasgupta (2015, p. 615) uses 𝛾 to pick out a class of privileged
urves that force-free bodies traverse. Recall that the way in which
e proposes to do this is to ‘‘take the set of all trajectories that are
naccelerated relative to [𝛾]. According to 𝑇2, they are the privileged
rajectories followed by bodies in the absence of force, and bodies
nder the influence of force follow trajectories that are curved relative
o those privileged ones (where the degree of curvature is again pro-
ortional to the force)’’. A particularly natural way to make this idea
recise is as follows.
𝑇2 will be formulated using Galilean spacetime (R4, 𝑡𝑎, ℎ𝑎𝑏,∇) as its

ackground spacetime structure. But whereas the equation of motion
1) of 𝑇1 said that the force on the body was proportional to its
cceleration, the equation of motion of 𝑇2 will say that the force on the
ody is proportional to its acceleration relative to 𝛾, whose acceleration
s itself non-zero. The following equation of motion makes this thought
recise. If a particle has mass 𝑚, then 𝑇2 says that it will traverse a
mooth timelike curve whose tangent field 𝜉𝑎 satisfies 𝑡𝑎𝜉𝑎 = 1 and

𝑎 = 𝑚
(

𝜉𝑛∇𝑛𝜉
𝑎 + sin(𝑥1)

( 𝜕
𝜕𝑥2

)𝑎) (2)

here 𝐹 𝑎 is the vector field representing the net force acting on the
article.

This new equation of motion (2) is saying that the forces on a body
ictate how ‘accelerated’ it is relative to 𝛾. So as one can easily verify,
f no forces are acting on the body, it will traverse a trajectory that has
recisely the same acceleration as 𝛾 has. A net force on the body will
ake it traverse a trajectory that deviates from the state of acceleration

hat 𝛾 exhibits. This means that according to 𝑇2, massive bodies that are
ree of forces travel along curved trajectories. To see this, suppose that
smooth curve 𝛾 ′ with tangent field 𝜉𝑎 is the trajectory of a massive

orce-free body. Since the body is free of forces, 𝐹 𝑎 = 𝟎 and Eq. (2)
mmediately implies that 𝜉𝑛∇𝑛𝜉𝑎 = − sin(𝑥1)

( 𝜕
𝜕𝑥2

)𝑎. So a curve 𝛾 ′ is a
privileged curve according to 𝑇2 if it has the same acceleration as 𝛾.
Or in other words, this is saying that the privileged curves through
 t
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Galilean spacetime are those that are ‘curved’ just like 𝛾 is, according
to the standard of constancy that ∇ determines.

We now have enough details on the formulation of 𝑇2 to consider
premise P2. Suppose that we observe some body that is not being acted
upon by any forces.

P2. 𝑇2 asserts that the body is traversing a curved trajectory.

There is a sense in which P2 is true. 𝑇2 says that massive bodies experi-
encing no net force will traverse timelike curves whose 4-acceleration is
the same as that of 𝛾, which is itself non-zero. Such curves will therefore
not be geodesics of ∇. Rather, they will be ‘curved’ relative to ∇, just
like 𝛾. On this understanding of 𝑇2, therefore, there is a strong sense in
which P2 is true.

On the face of it, P3 also strikes us as true.

P3. We have no reason to prefer 𝑇1 over 𝑇2, or vice versa.

Dasgupta (2015, p. 615) mentions the following considerations in favor
of P3:

They are empirically equivalent, so data are never going to refute
one but not the other. Any reason to believe one over the other must
therefore be based on some criteria other than empirical adequacy,
such as simplicity. And, though 𝑇1 is easier than 𝑇2 to write down,
it is not clear whether that is the kind of simplicity that yields
an epistemic reason to believe 𝑇1. Clearly, the issue depends on
epistemological issues regarding what kinds of criteria yield reasons
for belief.

oth of the theories will account for the phenomena equally well,5
and on the face of it both of them seem to appeal to the same basic
structures on spacetime: the spatial metric ℎ𝑎𝑏, the temporal metric
𝑡𝑎, and the derivative operator ∇. So unless we can isolate some good
eason to prefer 𝑇1 over 𝑇2, or vice versa, P3 stands.

If it is the case that all of the premises P1, P2, and P3 are true, then
he curvature argument will have the same standing as the boost argu-
ent. One can infer from these three premises that there is something

bad’ about the standard of ‘straightness’ – i.e. the derivative operator
– that is associated with Galilean spacetime. It must be ‘dispensable’,

redundant’, ‘surplus’, or ‘undetectable’ structure, in the same sense
s the Newtonian standard of absolute rest was. This is a surprising
onclusion that dissents from the standard view that Galilean spacetime
s an appropriate spacetime setting for classical physics.6

3. The curvature argument is unsound

The curvature argument, however, does not go through. Given the
way we have formulated 𝑇2, there is a strong sense in which P3 is
false. 𝑇2 comes equipped with more structure than 𝑇1, in the form of an
extra derivative operator in addition to ∇. It is therefore disingenuous
to say – as we did when describing 𝑇2 in the preceding section – that 𝑇2
has Galilean spacetime as its background spacetime structure. Rather,
𝑇2 appeals to strictly more structure than Galilean spacetime comes
equipped with. A simple application of a structural parsimony principle
therefore licenses us to prefer 𝑇1 over 𝑇2, rendering P3 false. It will take
a moment to make this idea precise. Our first task is to precisely define
this new derivative operator. We then demonstrate the sense in which
𝑇2 appeals to it.

5 That 𝑇2 accounts for the phenomena as well as 𝑇1 is implied by the results
that follow. In particular, Proposition 3 implies that the equation of motion (2)
is just a restatement of (1), but using a different derivative operator than ∇.

his means that (2) is in fact just another way to state the standard Newtonian
quation of motion.

6 There are other notable dissenters, though they dissent for different rea-
ons than Dasgupta. See, for example, the work of Saunders (2013) and Knox
2014) on how best to understand the geometry posited by Newton’s theory
f motion. See also Dewar (2018), Wallace (2017, 2020), and Weatherall
2016b). This debate takes place in the context of Newtonian gravitational
heory, however, so the arguments put forward are of a different character
han the curvature argument.
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3.1. The derivative operator 𝑓∗(∇)

It will take a moment to describe the kind of additional deriva-
tive operator that 𝑇2 appeals to. Suppose that 𝑔 ∶ 𝑀 → 𝑁 is a
iffeomorphism between smooth manifolds 𝑀 and 𝑁 and that ∇ is a
erivative operator on 𝑀 . The diffeomorphism 𝑔 allows us define a
erivative operator 𝑔∗(∇) on 𝑁 by ‘pushing forward’ ∇. We define this
ew derivative operator by its action on an arbitrary smooth tensor
ield:

∗(∇𝑛)𝛼𝑎1…𝑎𝑛 𝑏1…𝑏𝑚 = 𝑔∗(∇𝑛𝑔
∗(𝛼𝑎1…𝑎𝑛 𝑏1…𝑏𝑚 ))

here 𝛼𝑎1…𝑎𝑛 𝑏1…𝑏𝑚 is an arbitrary smooth tensor field on 𝑁 . The
perator 𝑔∗(∇) acts on 𝛼𝑎1…𝑎𝑛 𝑏1…𝑏𝑚 in an intuitive manner; 𝛼𝑎1…𝑎𝑛 𝑏1…𝑏𝑚
s first ‘pulled back’ onto 𝑀 using 𝑔, then ∇ is applied to this tensor
ield on 𝑀 , and the resulting tensor field is then ‘pushed forward’ onto

using 𝑔.

The following simple fact characterizes 𝑔∗(∇). The proof of this
emma has been placed in the Appendix, along with proofs of all of
he results that follow.

emma 1. 𝑔∗(∇) is a derivative operator on 𝑁 . Moreover, a smooth curve
′ is a geodesic of ∇ if and only if 𝑔◦𝛾 ′ is a geodesic of 𝑔∗(∇).

Since a derivative operator is fully characterized by its class of
eodesics (Malament, 2012, Prop. 1.7.8), Lemma 1 tells us precisely
hat 𝑔∗(∇) is like. It is the derivative operator whose geodesics are

imply those of ∇ after they have been pushed forward onto 𝑁 by the
iffeomorphism 𝑔.

There is, of course, no requirement that 𝑀 and 𝑁 be distinct
anifolds. If we have a diffeomorphism 𝑀 to itself and a derivative

perator on 𝑀 , we can pushforward that derivative operator in the way
ust described in order to define another derivative operator on 𝑀 . This
s precisely what allows us to describe the extra derivative operator that
2 is appealing to. It is the derivative operator 𝑓∗(∇) on R4, where the
iffeomorphism 𝑓 ∶ R4 → R4 is defined by

(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1, 𝑥2 + sin(𝑥1), 𝑥3, 𝑥4)

n standard coordinates on R4. One can easily verify that 𝑓 maps the
𝑥1-axis’ in Galilean spacetime to our privileged curve 𝛾. Lemma 1 tells
s exactly what standard of constancy the derivative operator 𝑓∗(∇)
s laying down on R4. Its geodesics are those trajectories that result
rom using 𝑓 to uniformly ‘bend’ all of the straight curves (according
o ∇) through Galilean spacetime. The resulting curves are then straight
ccording to 𝑓∗(∇). Since the curve 𝛾 ′ ∶ 𝑡 ↦ (𝑡, 0, 0, 0) is a geodesic of ∇,
emma 1 implies that 𝑓◦𝛾 ′ = 𝛾, while not a geodesic of ∇, is a geodesic
f 𝑓∗(∇). The derivative operators ∇ and 𝑓∗(∇) have different geodesics
nd are therefore distinct derivative operators on R4. But importantly,
his new derivative operator still considers the spatial and temporal
etrics on Galilean spacetime to be constant, as the following lemma
emonstrates.

emma 2. 𝑓∗(∇) is compatible with both 𝑡𝑎 and ℎ𝑎𝑏, in the sense that
∗(∇𝑛)𝑡𝑎 = 𝟎 and 𝑓∗(∇𝑛)ℎ𝑎𝑏 = 𝟎.

The following figure allows us to picture 𝑓∗(∇). The dotted lines are
eodesics relative to ∇. Their images under 𝑓 , which are represented

he solid lines, are geodesics of 𝑓∗(∇).

33
Lemma 1 guarantees that all of the geodesics of 𝑓∗(∇) result from
‘bending’ a geodesic of ∇ in this manner. In what follows we will show
that these ‘bent’ curves – in other words, images of geodesics of ∇ under
𝑓 – are the privileged trajectories that force-free bodies travel according
to 𝑇2.

3.2. 𝑇2 appeals to 𝑓∗(∇)

There is a strong sense in which 𝑇2 appeals to the derivative
operator 𝑓∗(∇). We will isolate three senses in which this is the case.
First, the structures that 𝑇2 explicitly appeals to naturally give rise to
the further structure 𝑓∗(∇), in much the same way as a manifold with
metric naturally gives rise to its Levi-Civita derivative operator. Second,
the structures that 𝑇2 explicitly appeals to suffice to implicitly define
𝑓∗(∇). And third, 𝑓∗(∇) is appealed to by the 𝑇2’s equation of motion in
exactly the same way as ∇ is appealed to by 𝑇1’s equation of motion. It
will be useful to introduce a piece of notation. We define the class 𝐶 of
privileged curves of 𝑇2 to consist of those timelike curves 𝛾 ′ ∶ R → R4

whose tangent fields 𝜉𝑎 satisfy 𝑡𝑎𝜉𝑎 = 1 and 𝜉𝑛∇𝑛𝜉𝑎 = − sin(𝑥1)
( 𝜕
𝜕𝑥2

)𝑎.
The curves in 𝐶 are those that have the same 4-acceleration as 𝛾 and are
therefore possible trajectories of massive force-free bodies according to
𝑇2.

We begin with a pair of lemmas. Recall that we say that a curve
is spacelike if its tangent vectors have zero temporal length at every
point. We can think of spacelike curves in Galilean spacetime as those
that ‘lie entirely in’ a particular simultaneity slice. If 𝛾 ′ ∶ 𝐼 → 𝑀 is
a smooth curve with tangent field 𝜉𝑎, then we say that a tensor field
𝛼𝑎1 ,…,𝑎𝑚
𝑏1 ,…,𝑏𝑟

is constant along 𝛾 ′ (with respect to ∇) if 𝜉𝑛∇𝑛𝛼
𝑎1 ,…,𝑎𝑚
𝑏1 ,…,𝑏𝑟

= 𝟎.

Lemma 3. If 𝛾 ′ ∶ R → R4 is a smooth curve with tangent field 𝜉𝑎 that
satisfies 𝑡𝑎𝜉𝑎 = 1, then there is a unique vector field that agrees with 𝜉𝑎 on
the image of 𝛾 ′ and is constant along all spacelike curves.

The idea behind Lemma 3 is clear. Galilean spacetime comes
equipped with the structure necessary to naturally extend the tangent
field of 𝛾 ′ to a vector field on all of R4. This extension proceeds in the
following manner. Since 𝛾 ′ is guaranteed to intersect each simultaneity
slice exactly once, each point in the simultaneity slice will be assigned
the ‘same’ vector (according to the standard of constancy given by ∇)
as the tangent field of 𝛾 ′ takes at the point where it intersects that slice.
When no confusion will result, we will use the notation 𝜉𝑎 to refer to
the vector field whose existence is guaranteed by Lemma 3, and it will
be understood that the field 𝜉𝑎 is defined on all of R4 and not just on
the image of 𝛾 ′.

We need one more lemma before we can isolate the first sense in
which 𝑇2 appeals to 𝑓∗(∇).

Lemma 4. If 𝛾 ′ is a smooth curve in 𝐶 with tangent field 𝜉𝑛, then the
smooth tensor field ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏 is a metric on R4.

We take a moment to unravel this result. Recall that while the
𝑎𝑏
spatial metric ℎ can be used to indirectly assign a spatial length
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to spacelike vectors (Malament, 2012, p. 253), it is not technically
a metric on R4. It fails to satisfy the non-degeneracy condition on a

etric, since there are non-zero covectors (like 𝑑𝑎𝑥1) that it assigns zero
ength to. This is important for the following reason. A non-degenerate
etric on a manifold naturally determines a derivative operator on that
anifold, in the sense that there is a unique derivative operator that is

ompatible with that metric. Since ℎ𝑎𝑏 is not a non-degenerate metric,
his result does not go through. As we mentioned earlier, there is more
han one derivative operator that is compatible with both ℎ𝑎𝑏 and 𝑡𝑎.
emma 4 shows us, however, that each of the privileged curves in 𝐶
ives rise to a non-degenerate metric on R4. Since each of these metrics
which will in general be distinct for different curves in 𝐶 – will in turn
ive rise to a derivative operator on R4, this captures a sense in which
ach curve in 𝐶 gives rise to a derivative operator on R4.

With these lemmas in hand, the first sense in which 𝑇2 appeals
o 𝑓∗(∇) is captured by the following proposition. We show that each
urve in 𝐶 gives rise to the same derivative operator (via the procedure
ust described), and moreover, that derivative operator is 𝑓∗(∇). The
roof of this proposition, along with all the others, is contained in the
Appendix.7

roposition 1. Let 𝛾 ′ ∶ R → R4 be a smooth curve in 𝐶 with tangent field
𝑛. Then 𝑓∗(∇) is the unique derivative operator compatible with the metric
𝑎𝑏 + 𝜉𝑎𝜉𝑏.

This result is telling us that the structures that 𝑇2 posits, in partic-
lar, those of Galilean spacetime plus the class 𝐶 of privileged curves,
aturally determine, give rise to, or ‘define’ the derivative operator
∗(∇). This is in much the same way as any manifold with metric
𝑀,𝑔𝑎𝑏) naturally comes equipped with its ‘Levi-Civita’ derivative op-
rator. In that case there is simply a unique derivative operator that is
ompatible with 𝑔𝑎𝑏. In the present case, there is a unique derivative
hat is compatible with all of the metrics that curves in 𝐶 give rise
o, and that derivative operator is 𝑓∗(∇). More precisely, Proposition 1
uarantees that an arbitrary curve 𝛾 ′ in 𝐶 gives rise to 𝑓∗(∇) in three
teps. First, by Lemma 3, the structure of Galilean spacetime allows us
o naturally extends the tangent field 𝜉𝑎 of 𝛾 ′ to all of R4. Second, by
emma 4, this vector field 𝜉𝑎 suffices to determine a metric on R4. And
hird, that metric in turn determines 𝑓∗(∇), in the sense that 𝑓∗(∇) is
he unique derivative operator compatible with the metric. At the end
f the day, therefore, Proposition 1 is capturing a robust sense in which
he structures that 𝑇2 posits include the derivative operator 𝑓∗(∇).

This same idea can be captured in a slightly different manner. We
ill now show that the structures of Galilean spacetime plus the class
of privleged curves of 𝑇2 suffice to implicitly define 𝑓∗(∇), in the

ense that any map that preserves the former structures also preserves
he latter.8 Recall that an automorphism of Galilean spacetime is

diffeomorphism 𝑔 ∶ R4 → R4 that satisfies the following three
onditions:

(i) 𝑔∗(𝑡𝑎) = 𝑡𝑎,
(ii) 𝑔∗(ℎ𝑎𝑏) = ℎ𝑎𝑏,

(iii) 𝑔∗(∇) = ∇, i.e. the two derivative operators agree in their action
on all smooth tensor fields on R4.

he first two conditions require that 𝑔 preserves the temporal metric
𝑎 and the spatial metric ℎ𝑎𝑏, and the third requires that 𝑔 preserves
he derivative operator ∇. One can show that the third condition holds
f and only if 𝑔 ‘preserves geodesics’ in the following sense: a smooth
urve 𝛾 ′ ∶ 𝐼 → R4 is a geodesic with respect to ∇ if and only if
◦𝛾 ′ ∶ 𝐼 → R4 is a geodesic with respect to ∇.9

7 See Malament (2012, Prop. 4.3.4) for a closely related result.
8 See Barrett (2018) and Winnie (1986) for discussion of implicit

efinability.
9 Barrett (2015b) and Weatherall (2016a) also define automorphisms of a

lassical spacetime in this way. See Barrett (2015b, Lemma 4) for proof that
ondition (iii) is the same as 𝑔 preserving geodesics.
34
We have the following result, which follows as a corollary to
Proposition 1.10

Proposition 2. Let 𝑔 ∶ R4 → R4 be an automorphism of Galilean
spacetime such that a smooth curve 𝛾 ′ is in 𝐶 if and only if 𝑔◦𝛾 ′ is in 𝐶.
Then 𝑔∗(𝑓∗(∇)) = 𝑓∗(∇).

After determining the symmetries of a particular mathematical ob-
ject 𝑋, like Galilean spacetime plus the class 𝐶 of privileged curves of
𝑇2, it is standard practice in physics and mathematics to look for the
structures on 𝑋 that are ‘invariant under’ or ‘preserved by’ all of these
symmetries. Those structures that are found to be invariant under the
symmetries of 𝑋 are often deemed to be ‘determined by’ or ‘constructed
from’ or ‘come for free given’ the basic structures of 𝑋. Proposition 2 is
telling us that 𝑓∗(∇) is among those structures that are invariant under
the symmetries of Galilean spacetime plus the class 𝐶. This means that
𝑓∗(∇) is implicitly defined by the structures of Galilean spacetime – in
particular, 𝑡𝑎, ℎ𝑎𝑏, and ∇ – plus the privileged class 𝐶 of curves. And
that captures our second sense in which 𝑇2 appeals to 𝑓∗(∇).

We now turn to the third and final way in which 𝑇2 appeals to 𝑓∗(∇).
There is, in fact, a strong sense in which 𝑓∗(∇) is doing all of the work
for the theory 𝑇2, while ∇ is doing none. The old derivative operator ∇
is essentially a piece of superfluous structure for 𝑇2. The following result
implies that the equation of motion that 𝑇2 employs can be written in
its most natural manner using 𝑓∗(∇) rather than ∇.

Proposition 3. Let 𝛾 ′ ∶ R → R4 be a smooth curve with tangent field 𝜉𝑎

that satisfies 𝑡𝑎𝜉𝑎 = 1. Then 𝜉𝑛𝑓∗(∇𝑛)𝜉𝑎 = 𝜉𝑛∇𝑛𝜉𝑎 + sin(𝑥1)
( 𝜕
𝜕𝑥2

)𝑎.

Proposition 3 is telling us that a curve’s 4-acceleration according
o 𝑓∗(∇) is the same as its 4-acceleration relative to 𝛾 according to
∇. It implies that the class of privileged trajectories 𝐶 that 𝑇2 singles
ut is just the class of timelike geodesics (whose tangent fields satisfy
𝑎𝜉𝑎 = 1) of 𝑓∗(∇). Proposition 3 also captures a strong sense in which
2 appeals to 𝑓∗(∇). Recall that if a body has mass 𝑚, then 𝑇2 says
hat it will traverse a smooth timelike curve whose tangent field 𝜉𝑎

atisfies 𝑡𝑎𝜉𝑎 = 1 and the equation of motion (2). Proposition 3 implies
hat Eq. (2) will hold of this curve if and only if
𝑎 = 𝑚𝜉𝑛𝑓∗(∇𝑛)𝜉𝑎 (3)

olds of it, where once again 𝐹 𝑎 is the vector field representing the net
orce acting on the body. This restatement of 𝑇2’s equation of motion is
ust the standard equation of motion (1) that 𝑇1 employed, but with the
ifferent derivative operator 𝑓∗(∇) instead of ∇. So 𝑇2 is appealing to
he derivative operator 𝑓∗(∇) in exactly the same manner as 𝑇1 appealed
o ∇: the most economical statement of the theory’s equation of motion
xplicitly appeals to it. The derivative operator 𝑓∗(∇) plays precisely the
ame role for the equation of motion of 𝑇2 as ∇ played for the equation
f motion of 𝑇1.

The derivative operator 𝑓∗(∇) captures the new standard of con-
tancy that we defined by singling out the new class of privileged
urves in our new equation of motion. The theory 𝑇2 is therefore
est understood as being formulated with the background spacetime
tructure (R4, ℎ𝑎𝑏, 𝑡𝑎,∇, 𝑓∗(∇)), which is clearly a strictly richer structure
han Galilean spacetime. There is a strong sense in which objects
hat admit more structure-preserving maps between them have less
tructure. If there are more isomorphisms between objects of a certain
ype, then those objects intuitively must have less structure that these
somorphisms are required to preserve. Conversely, if there are has
ewer isomorphisms between objects of some kind, then it must be

10 This result is conceptually similar to the famous result of Malament
(1977), who showed that the standard observer-relative simultaneity relation
on Minkowski space–time is the only non-trivial equivalence relation that is
invariant under maps that preserve the structures of Minkowski spacetime.
This is standardly taken to capture a sense in which the theory comes equipped
with a privileged notion of observer-relative simultaneity.
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that those objects have more structure that the isomorphisms are being
required to preserve. The amount of structure that an object has is,
in some sense, inversely proportional to the number of symmetries
that the object admits. Earman (1989, p. 36) puts this basic idea as
follows: ‘‘As the space–time structure becomes richer, the symmetries
become narrower’’. And North (2009, p. 87) writes that ‘‘stronger
structure [. . . ] admits a smaller group of symmetries’’. A collection of
precise criteria for comparing amounts of structure have recently been
proposed, all of which appeal to this basic idea that more structure-
preserving maps should indicate less structure.11 One can verify that
hese precise criteria for comparing ‘amounts of structure’ unsurpris-
ngly judge (R4, ℎ𝑎𝑏, 𝑡𝑎𝑏,∇, 𝑓∗(∇)) to have more structure than Galilean
pacetime. Consider the ‘temporal shift’ 𝑔 ∶ R4 → R4 defined by

∶ (𝑥1, 𝑥2, 𝑥3, 𝑥4) ⟼ (𝑥1 − 𝜋, 𝑥2, 𝑥3, 𝑥4)

ne can easily verify that 𝑔 is an automorphism of Galilean spacetime.
t does not, however, preserve the class of curves 𝐶. One computes that
◦𝛾(𝑡) = (𝑡, cos(𝑡), 0, 0), which clearly has a different 4-acceleration from
. This means that 𝑔 is not an automorphism of (R4, ℎ𝑎𝑏, 𝑡𝑎𝑏,∇, 𝑓∗(∇)).
alilean spacetime therefore admits a broader class of symmetries than

he spacetime structure presupposed by 𝑇2, and therefore it has less
tructure than what is being posited by 𝑇2.

This verdict is not surprising. Recall that in order to define the
heory 𝑇2 we first had to arbitrarily choose a smooth curve 𝛾 that would
e the basis for our new standard of acceleration. When we made this
ecision and then used 𝛾 to single out the new class 𝐶 of privileged
urves, we were equipping 𝑇2 with a new piece of structure. We can
ow return to premise P3 and see why it is false. Recall what P3 told
s about 𝑇1 and 𝑇2:

P3. We have no reason to prefer 𝑇1 over 𝑇2, or vice versa.

e have seen here that we do have good reason to prefer the standard
heory 𝑇1 over 𝑇2. 𝑇2 posits strictly more structure than 𝑇1 does.
nd moreover, 𝑇2 comes equipped with a piece of structure that is
uperfluous. As long as one has 𝑓∗(∇), one does not need ∇ to run
he theory. As Proposition 3 demonstrates, the equation of motion for
2 can be formulated without appeal to ∇. And this strikes one as
xactly the kind of simplicity that gives us good reason to prefer 𝑇1 over
2. The two theories 𝑇1 and 𝑇2 are not on equal footing. If we want
tructurally simpler theories and theories that do not come equipped
ith superfluous structure, then we should prefer 𝑇1 over 𝑇2, so P3 is

alse.

. The curvature argument revisited

This discussion of the relative merits of 𝑇1 over 𝑇2, however, sug-
ests an alternative way to formulate 𝑇2 that might allow the curvature
rgument to go through. In the formulation of 𝑇2 presented in Section 2
bove, the ‘extra’ derivative operator 𝑓∗(∇) was implicitly appealed to.
roposition 3, however, showed us that the original derivative operator
was actually not required in order to state the equation of motion

2) of 𝑇2. This suggests that we should formulate 𝑇2 without appeal
o ∇, and that might avoid the kind of argument raised earlier —
amely, that our initial formulation of 𝑇2 posited more structure than
1, rendering P3 false.

We take a moment to formulate precisely this alternative version
f 𝑇2. It uses the background spacetime structure (R4, 𝑡𝑎, ℎ𝑎𝑏, 𝑓∗(∇)).
ince 𝑓∗(∇) is compatible with 𝑡𝑎 and ℎ𝑎𝑏 (Lemma 2), this is a classical
pacetime in the sense of Malament (2012). This spacetime no longer
as ‘more structure’ than 𝑇1; indeed one can verify that this spacetime
s isomorphic to Galilean spacetime (and, indeed, that 𝑓 is an isomor-
hism). There is therefore a strong sense in which the two spacetime

11 See the literature on ‘amounts of structure’, e.g. Barrett (2015a, 2015b,
021), Bradley (2020), North (2009), Swanson and Halvorson (2012),
nd Weatherall (2016c) for discussion.
35
posit precisely the same structure. So the argument against P3 that we
put forward above will no longer go through. We can use the discussion
surrounding Proposition 3 to formulate the equation of motion of 𝑇2 in
the following manner. If a particle has mass 𝑚, then this formulation
of 𝑇2 says that it will traverse a timelike curve whose tangent field 𝜉𝑎

atisfies with 𝑡𝑎𝜉𝑎 = 1 and
𝑎 = 𝑚𝜉𝑛𝑓∗(∇𝑛)𝜉𝑎 (3)

here 𝐹 𝑎 is again the vector field representing the net force acting on
he particle. Proposition 3 implies that precisely the same trajectories
atisfy this equation of motion as satisfied the equation of motion for
ur original formulation of 𝑇2.

We now have a new formulation of 𝑇2 that does not posit more
tructure than 𝑇1. It may very well be that P3 is true in this case. But
nfortunately, if we formulate 𝑇2 in this way, then P2 is false. Suppose
hat we observe some body that is not being acted upon by any forces.
ecall what P2 tells us about this body.

P2. 𝑇2 asserts that the body is traversing a curved trajectory.

nder our current understanding of 𝑇2, this is false. The new formula-
ion of 𝑇2 does not say that the body is traversing a curved trajectory.
he only structure that 𝑇2 can appeal to in order to classify a curve as

straight’ or ‘curved’ is 𝑓∗(∇). And since 𝐹 𝑎 = 𝟎, the equation of motion
3) of 𝑇2 implies that the curve that this body is traversing will be a
eodesic of 𝑓∗(∇), so it is ‘straight’ according to 𝑓∗(∇). This formulation

has no other derivative operator to appeal to in order to classify the
curve as ‘curved’. If this is how we formulate 𝑇2, P2 is false.

5. Symmetry arguments

We have therefore shown that the curvature argument does not
demonstrate that there is something wrong with the standard of
‘straightness’ that Galilean spacetime employs. We presented two pre-
cise ways to formulate the theory 𝑇2 that the curvature argument relies
upon. In each case the curvature argument fails. When 𝑇2 is formulated
in the first way, we have good reason to prefer the standard theory 𝑇1
since 𝑇2 ends up coming equipped with surplus structure, rendering
premise P3 false. When 𝑇2 is formulated in the second way, it does not
actually assert that the trajectories traversed by massive free bodies
are curved, since the theory no longer comes equipped with ∇ — the
piece of structure that allowed us to classify these trajectories as curved.
And so in this case premise P2 is false. This response to the curvature
argument is best put as follows: If one formulates 𝑇2 with enough
structure to make P2 true, then P3 will be false. In either case, the
curvature argument is not sound.

We conclude by making a brief remark about the conditions under
which a ‘symmetry argument’, like the boost argument or curvature
argument, will succeed in demonstrating that a particular spacetime is
a non-ideal setting for our theory of motion. In order to do this we
need to isolate the conceptual difference between the boost argument
and the curvature argument.

We begin by recalling the boost argument. Newtonian spacetime is
the tuple (R4, 𝑡𝑎, ℎ𝑎𝑏,∇, 𝜆𝑎), where the temporal metric, spatial metric,
and derivative operator are defined in precisely the same way as in
Galilean spacetime, and the smooth vector field

𝜆𝑎 = ( 𝜕
𝜕𝑥1

)𝑎

is the ‘rigging’ that determines the Newtonian standard of rest. The
smooth timelike curves that have tangent field 𝜆𝑎, i.e. those that are
‘vertical’ in the figure below, are the ones traversed by bodies that are
at rest. The boost argument asks us to imagine a situation in which
we observe a body that is free of forces. Given that we take Newtonian
spacetime to best represent the underlying structure of spacetime, there
are two theories about this body that are compatible with the empirical
data (recall the figure from the introduction): according to 𝑇 the body
1
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is at rest, and according to 𝑇2 the body is moving at some constant
non-zero velocity. These two theories are related by a ‘boost symmetry’,
which one can picture as follows.

The Newtonian standard of rest 𝜆𝑎 is represented in the figure by the
otted arrows on the left. The symmetry is represented by the small
orizontal arrows that appear on each of the simultaneity slices. A
oost symmetry is defined by ‘flowing’ each spacetime point along the
ector field that the small horizontal arrows represent.12 Formally, the
oost symmetry is a diffeomorphism 𝑔 ∶ R4 → R4 which, as Geroch

(1978) sometimes put it, ‘bevels the deck’. The thought is that one can
picture the spacetime as a deck of cards, where each card represents
a simultaneity slice, and a boost symmetry evenly ‘bevels’ this deck.
We can think of 𝑔 as uniformly boosting the velocity of every body
in spacetime. The sense in which the boost symmetry relates our two
theories about the motion of the body is the following. Applying the
symmetry 𝑔 to the trajectory of the body according to theory 𝑇1 is how
one obtains 𝑇2. 𝑇1 says that the body traverses the curve 𝛾, which is at
rest, while 𝑇2 says that the body traverses 𝑔(𝛾), which is not at rest.

It is important to note the following fact about this diffeomorphism
𝑔. It preserves all of the structures on Newtonian spacetime except 𝜆𝑎.
It satisfies 𝑔∗(𝑡𝑎) = 𝑡𝑎 and 𝑔∗(ℎ𝑎𝑏) = ℎ𝑎𝑏, and in addition, it preserves ∇,
in the sense that 𝑔∗(∇) = ∇. But the boost symmetry 𝑔 does not satisfy
𝑔∗(𝜆𝑎) = 𝜆𝑎, which we can easily see since 𝑔 maps trajectories that are at
rest to trajectories that are not at rest. This is the essential characteristic
of the symmetry 𝑔 that makes the boost argument show that Newtonian
spacetime is a non-ideal spacetime setting: 𝑔 is not an isomorphism of
the underlying spacetime structure. It preserves all of the structures on
Newtonian spacetime except for the one that the boost argument aims
to show is ‘unscientific’ and ‘bad’.

There is a sense in which this is a necessary condition that a
symmetry argument must satisfy if it is to demonstrate that a particular
spacetime is a non-ideal setting for our theory of motion. The symmetry
that the argument exhibits must be a map that is not an isomorphism of
the underlying spacetime structure. We will here give two explanations
for why this is a necessary condition on the cogency of a symmetry
argument.

First, we consider how the boost symmetry 𝑔 shows us that Newto-
nian spacetime is non-ideal. One begins by judging that 𝑔 preserves
all of the structures that we take to be significant.13 Philosophers
might disagree about why we make this judgment. We might, for
example, make this judgment because the difference between theories
related by 𝑔 is ‘undetectable’ (Dasgupta, 2016). Or we might make
this judgment because 𝑔 is a ‘dynamical symmetry’, in the sense that
it maps dynamically allowable trajectories to dynamically allowable
trajectories (Earman, 1989, p. 45–6). The reason why we judge that

12 See Barrett (2015b) for a more precise formal presentation.
13 This is, of course, an idea that we might reconsider, especially if we come
p with some independent reason to think that 𝜆𝑎 itself is significant. As Fried-
an (1983, p. 115) remarks, ‘‘it may be perfectly useful and respectable in

onjunction with other theories’’ like classical electromagnetism.
36
preserves all of the structures that we care about, however, is not
mportant for our present purposes. All that is important here is that
nce we decide that 𝑔 preserves all of the structures that we care about,
e have decided that it should be considered an isomorphism of the

pacetime that underlies our theory of motion. If Newtonian spacetime
rovides us with our best description of the structure of spacetime,
hen, as we remarked above, 𝑔 is not an isomorphism.

So the fact that 𝑔 is not an isomorphism shows us that there is
mismatch between the structure of Newtonian spacetime and the

tructure that we want to ascribe to spacetime. If we are to consider
to be an isomorphism, then we need to move to a ‘less structured’

pacetime. Galilean spacetime, which does not come equipped with a
tandard of rest and therefore allows 𝑔 to be an isomorphism, therefore
etter represents the structure that we want to ascribe to spacetime.
t is in this sense that 𝑔 not being an isomorphism from Newtonian
pacetime to itself is crucial. It is precisely this feature of 𝑔 that allows
s to argue that Newtonian spacetime is not the ideal setting for
ur classical theory of motion. In brief, 𝑔 is not an isomorphism if
ewtonian spacetime is our underlying spacetime, and since we want 𝑔

o be an isomorphism, Newtonian spacetime is not an ideal spacetime
etting.

We now turn to the second explanation for why a symmetry must
ot be an isomorphism in order for the symmetry argument to motivate
move to a new spacetime setting. This reason concerns the relation-

hip between symmetry and structure. As we remarked above, there is
strong sense in which objects that admit more structure-preserving
aps between them have less structure. This idea about amounts of

tructure provides another explanation of our necessary condition. We
ecide that we want 𝑔 to be an isomorphism of the spacetime that
nderlies our theory of motion because it preserves all of the structures
hat we have deemed significant. Since it is not an isomorphism from
ewtonian spacetime to itself, this means that if we move to a space-

ime setting where 𝑔 is an isomorphism, then we will have moved to
spacetime that admits more structure-preserving maps. And therefore

he basic idea about amounts of structure suggested above implies that
ur new spacetime setting will have less structure than Newtonian
pacetime. And this captures a sense in which Newtonian spacetime
s not an ideal setting for our classical theory of motion: it has more
tructure than we want our spacetime to have.14 Note that if 𝑔 were an
somorphism, then this argument would not go through.

With our necessary condition now in hand, we turn to the curvature
rgument. The symmetry at the heart of the curvature argument is of an
mportantly different character than the boost symmetry 𝑔, despite the
act that it initially appears to satisfy our necessary condition. Recall
ow the curvature argument proceeds. Given that we take Galilean
pacetime to best represent the underlying structure of spacetime, there
eem to be two theories about this body that are both compatible
ith the empirical data: according to 𝑇1 the body is traversing a

traight trajectory, and according to 𝑇2 the body is traversing a curved
rajectory because 𝑇2 posits a different law of motion. We can picture
he symmetry that relates the theories 𝑇1 and 𝑇2 as follows.

14 Earman (1989) and Friedman (1983) express roughly this same thought.
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As with the boost symmetry, our ‘curvature symmetry’ can be
enerated by ‘flowing’ along the vector field in the figure. Formally,
he curvature symmetry is the diffeomorphism 𝑓 ∶ R4 → R4 that we
efined above. One can think of the curvature symmetry 𝑓 as once
gain ‘beveling the deck’, but this time doing so unevenly. At first
lance, it looks like 𝑓 satisfies our necessary condition. The diffeo-
orphism 𝑓 preserves 𝑡𝑎 and ℎ𝑎𝑏 – as demonstrated in the proof of

emma 2 – in the sense that 𝑓 ∗(𝑡𝑎) = 𝑡𝑎 and 𝑓 ∗(ℎ𝑎𝑏) = ℎ𝑎𝑏. But 𝑓
oes not preserve ∇, as we see from the fact that it maps geodesics
o curves that are not geodesics. At first glance, therefore, it seems like
he curvature symmetry 𝑓 satisfies our necessary condition: it is a map
rom Galilean spacetime to itself that is not an isomorphism. And like
he boost symmetry, it preserves all of the spacetime structures except
or the one that the argument aims to show is ‘unscientific’ and ‘bad’.

But this first glance is misleading. As we argued in the preceding
ections, it is disingenuous to say that Galilean spacetime (R4, 𝑡𝑎, ℎ𝑎𝑏,∇)

represents the spacetime structure that the theory 𝑇2 posits. Indeed, the
nderlying spacetime of 𝑇2 is either (R4, 𝑡𝑎, ℎ𝑎𝑏,∇, 𝑓∗(∇)) or (R4, 𝑡𝑎, ℎ𝑎𝑏,

𝑓∗(∇)). The first case is a non-starter, since as we argued in Section 3
that spacetime posits strictly more structure than is necessary.15 In the
second case, the curvature symmetry 𝑓 actually is an isomorphism, un-
like the boost symmetry. The map 𝑓 now preserves all of the structures
of the underlying spacetimes of 𝑇1 and 𝑇2. We already remarked that
it preserves the temporal metric 𝑡𝑎 and the spatial metric ℎ𝑎𝑏. But it
also preserves the derivative operator since 𝑓 trivially pushes forward
the derivative operator of Galilean spacetime to the derivative operator
𝑓∗(∇) that our second spacetime employs. So the curvature symmetry
does not satisfy our necessary condition.

We can see this in the following manner as well. In the case of the
boost argument, we were comparing two models of classical physics set
in Newtonian spacetime: (R4, 𝑡𝑎, ℎ𝑎𝑏,∇, 𝜆𝑎, 𝛾) and (R4, 𝑡𝑎, ℎ𝑎𝑏,∇, 𝜆𝑎, 𝑔(𝛾)),
where 𝛾 is the trajectory of some particle that is at rest in the first
model. We fix the state of rest and consider applying the boost sym-
metry to the particle. These two models that are non-isomorphic and
yet ‘observationally’ or ‘dynamically’ equivalent, and therefore we want
them to be isomorphic. In the case of the curvature argument – so long
as we are understanding 𝑇2 as formulated on (R4, 𝑡𝑎, ℎ𝑎𝑏, 𝑓∗(∇)) – we
are again comparing two models of classical physics. The curvature
argument requires us to consider force free trajectories in both 𝑇1
and 𝑇2. So the models we are comparing must be (R4, 𝑡𝑎, ℎ𝑎𝑏,∇, 𝛾) and
(R4, 𝑡𝑎, ℎ𝑎𝑏, 𝑓∗(∇), 𝑓 (𝛾)). And this is the difference between the boost and
curvature arguments. These two models are indeed ‘observationally’
or ‘dynamically’ equivalent, in the same sense as the models from the
boost argument are. But unlike in that case, these models are already
isomorphic via the map 𝑓 .

We therefore cannot use the ‘curvature symmetry’ 𝑓 to do the work
that we did with the boost symmetry 𝑔. Suppose we were to try to argue
as in the case of the boost symmetry: We would begin by deciding
that 𝑓 preserves all of the structures that we care about, and so we
would want it to be an isomorphism of our underlying spacetime. But
it already is an isomorphism. Unlike in the case of the boost symmetry
𝑔, we do not need to excise any structure from our underlying spacetime
in order to make this so.16

15 Moreover, while it is true that 𝑓 is not an isomorphism from Galilean
pacetime to the spacetime (R4, 𝑡𝑎, ℎ𝑎𝑏,∇, 𝑓∗(∇)), this is because there can be no
somorphism between those two objects. They are completely different kinds
f objects – the one has only one derivative operator, while the other has
wo – and it only makes sense to talk about isomorphisms between objects
f the same ‘kind’. So unlike in the case of the boost symmetry 𝑔, we cannot
oherently ‘want’ this map to be an isomorphism. In this sense the first version
f the curvature argument is of a completely different character than the boost
rgument.
16 One can imagine using something like Dasgupta’s curvature argument to
otivate the Saunders (2013) claim that Maxwell spacetime is a better setting

or Newton’s theory of motion than Galilean spacetime is. For our purposes
ere, it will suffice to note that in order to do this, one would have to formulate
37
. Conclusion

Of course, we have already argued that the curvature argument does
ot succeed. But this discussion helps to isolate why it is conceptually
ifferent from the boost argument. And moreover, recognizing this
ecessary condition on the cogency of a symmetry argument allows us
o reconsider other symmetry arguments too. We will here discuss two
ther arguments that Dasgupta (2015) mentions: the shift argument
n the context of Newtonian spacetime and the boost argument in the
ontext of Galilean spacetime.17

The shift argument asks us to imagine a situation in which we
bserve a body that is moving free of forces. Given that we take
ewtonian spacetime to best represent the underlying structure of

pacetime, there are two theories about this body that are compatible
ith the empirical data: according to 𝑇1 the body is traveling along

he trajectory 𝛾 in the below figure, and according to 𝑇2 the body is
raveling along the different trajectory ℎ(𝛾). These two theories are
elated by a ‘shift symmetry’, which one can picture as follows.

As before, the shift symmetry ℎ is represented by the small hori-
zontal arrows that appear on each of the simultaneity slices. A shift
symmetry is defined by ‘flowing’ each spacetime point along the vector
field that the small horizontal arrows represent, so it intuitively shifts
each point in R4 a fixed amount ‘to the right’. Now one can easily verify
that such a map ℎ is actually an isomorphism from Newtonian space-
ime to itself. It preserves the spatial metric, temporal metric, derivative
perator, and the standard of rest. While the shift argument may be
problem for various ‘substantivalist’ theses about the metaphysical

tatus of Newtonian spacetime, it should not prompt us to look for
nother spacetime setting for classical physics. It is unlike the boost
rgument in this regard.

For our final example we return to the boost argument, but now we
onsider it in the context of Galilean spacetime. Dasgupta claims that
he boost argument also poses a problem for ‘Galilean substantivalism’,
‘the view that Galilean space–time exists, and has this structure, inde-
endently of its material constituents’’ (Dasgupta, 2015, p. 613). Our

𝑇2 in a different way than Dasgupta does; his formulation 𝑇2 makes it so that 𝑔
does not satisfy the necessary condition. In particular, one would have to state
Newton’s law in such a way that it only appeals to the class of ‘non-rotating’
derivative operators that Maxwell spacetime employs.

17 Dasgupta (2015) also considers the shift argument in the context of
Galilean spacetime, and our same concern applies there. He is certainly not
the only one to consider these arguments, though he does admit that there
is a growing consensus among philosophers of physics that shift arguments
against Galilean spacetime are not compelling, while boost arguments against
Newtonian spacetime are Dasgupta (2015, p. 615). Perhaps the most famous
example of a symmetry argument that fails our necessary condition above
is the ‘hole argument’ in the context of general relativity, which is often
thought to show that general relativity comes equipped with some ‘surplus’
structure. See Bradley and Weatherall (2020) and Weatherall (2017) for related
discussion. But we will keep our focus here on the case of symmetries in
classical physics.
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discussion here shows that the boost argument does not pose a problem
for Galilean substantivalism in the same way as it posed a problem for
the analogous view about Newtonian spacetime. In particular, it does
not show that Galilean spacetime comes equipped with some structure
that is unscientific and bad. And it should not prompt us to look for
a better spacetime setting than Galilean spacetime. This is because,
like the curvature argument, the boost argument against Newtonian
spacetime fails to satisfy our necessary condition. As we mentioned
above, the boost symmetry 𝑔 is an isomorphism from Galilean space-
time to itself. Symmetry arguments in which the exhibited symmetry is
already an isomorphism of the underlying spacetime should not prompt
us to change our underlying spacetime theory like the boost argument
against Newtonian spacetime did. Such arguments do not give us reason
to try to excise a piece of structure.

Appendix

The purpose of this appendix is to provide proofs of the lemmas and
propositions in the paper. We take them in the order in which they
appear.

We begin, however, by remarking that these results – in particular,
Propositions 1 and 2 – can likely be strengthened. These two propo-
sitions isolate two senses in which the derivative operator 𝑓∗(∇) is
definable from the structure of Galilean spacetime plus the class 𝐶 of
rivileged curves. One naturally wonders whether the full structure of
alilean spacetime is needed to do this. It seems that it is not. If we only
ad the structure of Maxwell spacetime, for example, we might argue as
ollows.18 This spacetime has sufficient structure to say when a curve 𝛾 ′

s at rest relative to 𝛾. So we can extend the given curve 𝛾 to the class 𝐶
f curves ‘at rest’ relative to 𝛾 – even though we cannot use ∇ to do so,
s we do above – and then consider their tangent fields to define 𝜉𝑎.
emma 3 will therefore go through on Maxwell spacetime. Lemma 4
ill follow in the same way as below. Then 𝑓∗(∇) will be definable

rom that metric, as in Proposition 1, and since explicit definability
enerally entails implicit definability, the analogue of Proposition 2 will
o through with respect to Maxwell spacetime as well. The point here
s that in the argument below, the structure ∇ is only appealed to when
e extend 𝛾 to the class of curves 𝐶 and define 𝜉𝑎, and it seems that
e do not need to appeal to the full structure of ∇ even to do that. This
elps to make more precise the minimal role that ∇ plays in 𝑇2.

Whether these propositions hold for an even weaker spacetime
tructure, like Leibnizian spacetime, remains to be seen. For our pur-
oses here, we discuss in detail only the case of Galilean spacetime,
ince that is the concern of Dasgupta’s curvature argument. We now
urn to proofs of our main results.

emma 1. 𝑔∗(∇) is a derivative operator on 𝑁 . Moreover, a smooth curve
′ is a geodesic of ∇ if and only if 𝑔◦𝛾 ′ is a geodesic of 𝑔∗(∇).

roof. One easily verifies that 𝑔∗(∇) is indeed a derivative operator
y checking that conditions DO1–DO6 of Malament (2012, p. 49) hold
f it. For example, DO5 requires us to verify that for all smooth scalar
ields 𝛼 on 𝑁 and all smooth vector fields 𝜉𝑛 on 𝑁 , 𝜉𝑛𝑔∗(∇𝑛)𝛼 = 𝜉(𝛼).

e compute the following:
𝑛𝑔∗(∇𝑛)𝛼 = 𝜉𝑛𝑔∗(∇𝑛𝑔

∗(𝛼)) = 𝜉𝑛𝑔∗(∇𝑛(𝛼◦𝑔))

= 𝑔∗(𝜉𝑛)∇𝑛(𝛼◦𝑔)

= 𝑔∗(𝜉𝑛)(𝛼◦𝑔)

= 𝜉𝑛(𝛼◦𝑔◦𝑔−1) = 𝜉(𝛼)

he first equality follows from the definition of 𝑔∗(∇). The second,
hird, and fifth follow from familiar properties of the pushforward and
ullback maps 𝑔∗ and 𝑔∗. The fourth holds since ∇ is a derivative

18 See Earman (1989) for a definition of Maxwell spacetime.
38
operator and therefore satisfies DO5, and the sixth follows immediately
from the fact that 𝑔◦𝑔−1 is the identity map.

Now suppose that 𝛾 ′ is a geodesic of ∇ with tangent field 𝜉𝑎.
Consider the curve 𝑔◦𝛾 ′ with tangent field 𝑔∗(𝜉𝑎). Let 𝜈𝑎 be a covector
t a point 𝑝 = 𝑔◦𝛾 ′(𝑠). We compute:

∗(𝜉𝑛)𝑔∗(∇𝑛)𝑔∗(𝜉𝑎)
|

|

|𝑝
⋅ 𝜈𝑎 = 𝑔∗(𝜉𝑛)𝑔∗(∇𝑛𝑔

∗(𝑔∗(𝜉𝑎)))
|

|

|𝑝
⋅ 𝜈𝑎

= 𝑔∗(𝜉𝑛)𝑔∗(∇𝑛𝜉
𝑎)||
|𝑝
⋅ 𝜈𝑎

= 𝑔∗(𝜉𝑛∇𝑛𝜉
𝑎)||
|𝑝
⋅ 𝜈𝑎

= 𝜉𝑛∇𝑛𝜉
𝑎|
|

|𝑔−1(𝑝)
⋅ 𝑔∗(𝜈𝑎)

= 0

he first equality follows from the definition of 𝑔∗(∇), the second from
he fact that 𝑔∗◦𝑔∗ is the identity map, the third and fourth from
roperties of the pushforward, and the fifth since 𝛾 ′ is a geodesic of
. Since 𝜈𝑎 was arbitrary, this means that 𝑔◦𝛾 ′ is a geodesic of 𝑔∗(∇).
n analogous computation shows that if 𝑔◦𝛾 ′ is a geodesic of 𝑔∗(∇) then
′ is a geodesic of ∇. □

emma 2. 𝑓∗(∇) is compatible with both 𝑡𝑎 and ℎ𝑎𝑏, in the sense that
∗(∇𝑛)𝑡𝑎 = 𝟎 and 𝑓∗(∇𝑛)ℎ𝑎𝑏 = 𝟎.

roof. One computes all of the following:

𝑓 ∗(𝑑𝑛𝑥𝑗 ) = 𝑑𝑛𝑥
𝑗 for 𝑗 ≠ 2

𝑓 ∗(𝑑𝑛𝑥2) = cos(𝑥1)𝑑𝑛𝑥1 + 𝑑𝑛𝑥
2

𝑓 ∗( 𝜕
𝜕𝑥𝑖

)𝑎 = ( 𝜕
𝜕𝑥𝑖

)𝑎 for 𝑖 ≠ 1

𝑓 ∗( 𝜕
𝜕𝑥1

)𝑎 = ( 𝜕
𝜕𝑥1

)𝑎 − cos(𝑥1)( 𝜕
𝜕𝑥2

)𝑎

(4)

It immediately follows from (4) that 𝑓 ∗(𝑡𝑎) = 𝑡𝑎 and 𝑓 ∗(ℎ𝑎𝑏) = ℎ𝑎𝑏. This
in turn implies that

𝑓∗(∇𝑛)(𝑡𝑎) = 𝑓∗(∇𝑛𝑓
∗(𝑡𝑎)) = 𝑓∗(∇𝑛𝑡𝑎) = 𝟎

The last equality follows from the fact that ∇ is compatible with 𝑡𝑎. One
shows that and 𝑓∗(∇𝑛)(ℎ𝑎𝑏) = 𝟎 in a perfectly analogous manner. □

Lemma 3. If 𝛾 ′ ∶ R → R4 is a smooth curve with tangent field 𝜉𝑎 that
satisfies 𝑡𝑎𝜉𝑎 = 1, then there is a unique vector field that agrees with 𝜉𝑎 on
he image of 𝛾 ′ and is constant along all spacelike curves.

roof. We first demonstrate existence. The structure of Galilean space-
ime provides us with a natural way to ‘extend’ 𝜉𝑛 to a field on all of
4. Given a point 𝑝 ∈ R4 we consider a spacelike curve that passes

hrough the point 𝑝 and 𝛾 ′(𝑠0) for some 𝑠0 ∈ R. That such a spacelike
urve exists is guaranteed by the fact that 𝑡𝑎𝜉𝑎 = 1, so 𝛾 ′ intersects
very simultaneity slice, and in particular, the one that 𝑝 lies on. We
arallel transport the vector 𝜉𝑛|𝛾′(𝑠0) along this spacelike curve to the
oint 𝑝 to obtain the vector 𝜉𝑛|𝑝. Since ∇ is flat, parallel transport is path
ndependent, and our choice of spacelike curve makes no difference.
nd moreover the spacelike curve will intersect 𝛾 ′ exactly once, so
𝑛
|𝑝 is well-defined. Because 𝜉𝑎 results from this procedure of parallel

ransporting along spacelike curves, it is immediate that 𝜉𝑎 is constant
long all spacelike curves.

Suppose now that 𝛼𝑛 and 𝛽𝑛 agree with 𝜉𝑛 on the image of 𝛾 ′

nd are constant along all spacelike curves. Let 𝑝 ∈ R4 and consider
he point 𝛾 ′(𝑠) that lies on the same simultaneity slice as 𝑝, so that
1(𝑝) = 𝑥1(𝛾 ′(𝑠)). We write out both 𝛼𝑛 and 𝛽𝑛 in standard coordinates
s 𝛼𝑛 =

∑4
𝑖=1

𝑖
𝛼( 𝜕

𝜕𝑥𝑖 )
𝑛 and 𝛽𝑛 =

∑4
𝑖=1

𝑖
𝛽( 𝜕

𝜕𝑥𝑖 )
𝑛. We know that

𝑖
𝛼(𝛾 ′(𝑠)) =

𝑖
𝛽(𝛾 ′(𝑠)) for each 𝑖 since the two fields agree on the image of 𝛾 ′. Now
or each 𝑗 ≠ 1 we compute the following:

= ( 𝜕 )𝑛∇ 𝛼𝑎

𝜕𝑥𝑗 𝑛
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= ( 𝜕
𝜕𝑥𝑗

)𝑛∇𝑛
(

4
∑

𝑖=1

𝑖
𝛼( 𝜕

𝜕𝑥𝑖
)𝑎
)

= ( 𝜕
𝜕𝑥𝑗

)𝑛
4
∑

𝑖=1

4
∑

𝑘=1

𝜕
𝑖
𝛼

𝜕𝑥𝑘
𝑑𝑛𝑥

𝑘( 𝜕
𝜕𝑥𝑖

)𝑎

=
4
∑

𝑖=1

𝜕
𝑖
𝛼

𝜕𝑥𝑗
( 𝜕
𝜕𝑥𝑖

)𝑎

he first equality follows since the ‘𝑗th-coordinate curve’ (that has
tangent field ( 𝜕

𝜕𝑥𝑗 )
𝑛) is spacelike and 𝛼𝑛 is constant along spacelike

urves. The second equality results from writing out 𝛼𝑛 in coordinates,
he third from the definition of the coordinate derivative operator, and
he fourth from the fact that ( 𝜕

𝜕𝑥𝑗 )
𝑛𝑑𝑛𝑥𝑘 = 𝛿𝑘𝑗 . This implies that

𝜕
𝑖
𝛼

𝜕𝑥𝑗
= 0 (5)

for every 𝑖 and each 𝑗 ≠ 1. We compute in the same manner that
𝜕
𝑖
𝛽

𝜕𝑥𝑗 = 0 for every 𝑖 and each 𝑗 ≠ 1. This means that when written out

in standard coordinates the smooth scalar fields
𝑖
𝛼 and

𝑖
𝛽 are functions

of just the 𝑥1-coordinate. Since the 𝑥1-coordinate of 𝑝 is the same as
the 𝑥1-coordinate of 𝛾 ′(𝑠) we immediately see that

𝑖
𝛼(𝑝) =

𝑖
𝛼(𝛾 ′(𝑠)) and

𝑖
𝛽(𝑝) =

𝑖
𝛽(𝛾 ′(𝑠)) for each 𝑖. That implies that

𝑖
𝛼(𝑝) =

𝑖
𝛽(𝑝) for all 𝑖, which

means that 𝛼𝑛 = 𝛽𝑛. □

Lemma 4. If 𝛾 ′ is a smooth curve in 𝐶 with tangent field 𝜉𝑛, then the
smooth tensor field ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏 is a metric on R4.

Proof. It is clear that ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏 is symmetric since ℎ𝑎𝑏 is. Consider the
smooth tensor field ℎ̂𝑎𝑏 + 𝑡𝑎𝑡𝑏, where ℎ̂𝑎𝑏 is the spatial projection field
associated with ℎ𝑎𝑏 and 𝜉𝑎 Malament (2012, Prop. 4.1.2). We compute:

(ℎ̂𝑎𝑏 + 𝑡𝑎𝑡𝑏)(ℎ𝑏𝑐 + 𝜉𝑏𝜉𝑐 ) = ℎ̂𝑎𝑏ℎ
𝑏𝑐 + ℎ̂𝑎𝑏𝜉

𝑏𝜉𝑐 + 𝑡𝑎𝑡𝑏ℎ
𝑏𝑐 + 𝑡𝑎𝑡𝑏𝜉

𝑏𝜉𝑐

= ℎ̂𝑎𝑏ℎ
𝑏𝑐 + ℎ̂𝑎𝑏𝜉

𝑏𝜉𝑐 + 𝑡𝑎𝜉
𝑐

= 𝛿𝑐𝑎 − 𝑡𝑎𝜉
𝑐 + 𝑡𝑎𝜉

𝑐

= 𝛿𝑐𝑎

The first equality follows from properties of tensor multiplication, the
second since 𝑡𝑏ℎ𝑏𝑐 = 𝟎 and 𝑡𝑏𝜉𝑏 = 1, and the third from the definition
of ℎ̂𝑎𝑏. So ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏 is symmetric and invertible (i.e. non-degenerate)
and therefore a metric. □

Proposition 1. Let 𝛾 ′ ∶ R → R4 be a smooth curve in 𝐶 with tangent field
𝜉𝑛. Then 𝑓∗(∇) is the unique derivative operator compatible with the metric
𝑎𝑏 + 𝜉𝑎𝜉𝑏.

roof. We need to show that 𝑓∗(∇𝑛)(ℎ𝑎𝑏+𝜉𝑎𝜉𝑏) = 𝟎. We begin by writing

ut 𝜉𝑎 = ∑4
𝑖=1

𝑖
𝜉( 𝜕

𝜕𝑥𝑖 )
𝑎 in standard coordinates. One then computes in the

same manner as in the proof of Eq. (5) in Lemma 3 that

𝜕
𝑖
𝜉

𝜕𝑥𝑗
= 0 (6)

for every 𝑖 and each 𝑗 ≠ 1. Note also that because 𝑡𝑎𝜉𝑎 = 1 and 𝑡𝑎 = 𝑑𝑎𝑥1,

it must be that
1
𝜉 = 1.

Lemma 2 implies that 𝑓∗(∇𝑛)(ℎ𝑎𝑏) = 𝟎. So if we can show that
𝑓∗(∇𝑛)(𝜉𝑎) = 𝟎, then we will be done. By the definition of 𝑓∗(∇), we
know that 𝑓∗(∇𝑛)(𝜉𝑎) = 𝑓∗(∇𝑛𝑓 ∗(𝜉𝑎)). So now we begin to compute.

𝑛𝑓
∗(𝜉𝑎) = ∇𝑛(

4
∑

𝑖=1

𝑖
𝜉𝑓 ∗( 𝜕

𝜕𝑥𝑖
)𝑎)

= ∇𝑛

(1
𝜉
(

( 𝜕
𝜕𝑥1

)𝑎 − cos(𝑥1)( 𝜕
𝜕𝑥2

)𝑎
)

+
4
∑

𝑖=2

𝑖
𝜉( 𝜕
𝜕𝑥𝑖

)𝑎
)

= ∇𝑛

( 4
∑ 𝑖

𝜉( 𝜕
𝑖 )

𝑎 − cos(𝑥1)( 𝜕
2
)𝑎
)

𝑖=1 𝜕𝑥 𝜕𝑥 𝑔
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=
4
∑

𝑖=1
(∇𝑛

𝑖
𝜉)( 𝜕

𝜕𝑥𝑖
)𝑎 − (∇𝑛 cos(𝑥1))(

𝜕
𝜕𝑥2

)𝑎

=
4
∑

𝑖=1

4
∑

𝑗=1

𝜕
𝑖
𝜉

𝜕𝑥𝑗
𝑑𝑛𝑥

𝑗 ( 𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎

=
4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑑𝑛𝑥

1( 𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎

The first equality follows from writing out 𝜉𝑎 in standard coordinates
and the linearity of 𝑓 ∗, the second from the computation of 𝑓 ∗ cat-
aloged in (4), and the third by rearranging terms. The fourth and
fifth equalities follow from the definition of the coordinate derivative
operator, and the last equality follows from Eq. (6).

This computation then implies the following.

𝑓∗(∇𝑛𝑓
∗(𝜉𝑎)) = 𝑓∗

( 4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑑𝑛𝑥

1( 𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎
)

=
4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑓∗(𝑑𝑛𝑥1)𝑓∗(

𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)𝑓∗(𝑑𝑛𝑥1)𝑓∗(
𝜕
𝜕𝑥2

)𝑎

=
4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑑𝑛𝑥

1( 𝜕
𝜕𝑥𝑖

)𝑎 +
𝜕
1
𝜉

𝜕𝑥1
cos(𝑥1)( 𝜕

𝜕𝑥2
)𝑎

+ sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎

=
4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑑𝑛𝑥

1( 𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎

The first equality follows from our first computation, the second from
properties of the pushforward 𝑓∗, and the third from the computation
of 𝑓 ∗ cataloged in (4) and the fact that 𝑓∗ is inverse to it. The fourth

follows since 𝜕
1
𝜉

𝜕𝑥1
= 0, which we know because

1
𝜉 = 1.

Putting all of this together yields the following equation:

𝑓∗(∇𝑛)(𝜉𝑎) =
4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑑𝑛𝑥

1( 𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎 (7)

Now we want to show that the right-hand side of Eq. (7) is 𝟎. Recall
hat 𝜉𝑛∇𝑛𝜉𝑎 = − sin(𝑥1)( 𝜕

𝜕𝑥2
)𝑎 since 𝛾 ′ is in 𝐶. Writing out the left-hand

side of this equation in standard coordinates gives us that

4
∑

𝑖=1

4
∑

𝑗=1

𝑗
𝜉
𝜕
𝑖
𝜉

𝜕𝑥𝑗

(

𝜕
𝜕𝑥𝑖

)𝑎
= − sin(𝑥1)

(

𝜕
𝜕𝑥2

)𝑎
(8)

Unraveling equation (8) then gives us all of the following.

𝜕
1
𝜉

𝜕𝑥1
= 0

𝜕
2
𝜉

𝜕𝑥1
= − sin(𝑥1)

𝜕
3
𝜉

𝜕𝑥1
= 0

𝜕
4
𝜉

𝜕𝑥1
= 0

For example, in the 𝑖 = 2 case, Eq. (8) implies that ∑4
𝑗=1

𝑗
𝜉 𝜕

2
𝜉

𝜕𝑥𝑗 = − sin(𝑥1).
q. (6) then implies that all of the terms in the summation are 0

xcept for the 𝑗 = 1 term, so
1
𝜉 𝜕

2
𝜉

𝜕𝑥1
= − sin(𝑥1). Since

1
𝜉 = 1, this

means that 𝜕𝜉2

𝜕𝑥1
= − sin(𝑥1), as desired. Now plugging all of these back

nto Eq. (7) gives us that 𝑓∗(∇𝑛)(𝜉𝑎) = 𝟎. And that immediately implies
hat 𝑓∗(∇𝑛)(ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏) = 𝟎, so 𝑓∗(∇) is the unique derivative operator

compatible with the metric ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏. □

Proposition 2. Let 𝑔 ∶ R4 → R4 be an automorphism of Galilean
pacetime such that a smooth curve 𝛾 ′ is in 𝐶 if and only if 𝑔◦𝛾 ′ is in 𝐶.
hen 𝑔∗(𝑓∗(∇)) = 𝑓∗(∇).

roof. Let 𝛾 ′ be a curve in 𝐶 with tangent field 𝜉𝑎. We will show that
∗(𝑓∗(∇)) is compatible with the metric ℎ𝑎𝑏 + 𝜉𝑎𝜉𝑏, and then Proposi-
ion 1 will imply that 𝑔∗(𝑓∗(∇)) = 𝑓∗(∇). We begin by computing.

𝑎𝑏 𝑎 𝑏 ( ∗ 𝑎𝑏 ∗ 𝑎 ∗ 𝑏 )
∗(𝑓∗(∇))(ℎ + 𝜉 𝜉 ) = 𝑔∗ 𝑓∗(∇)(𝑔 (ℎ ) + 𝑔 (𝜉 )𝑔 (𝜉 ))
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t

i
𝑔
a
f
𝑔

T
t

T
s
f
(
o
a

c
s

𝜆

T
u
i

𝑔

T
𝑡
s
i
S

P
t
𝜉
c
a

P
t

= 𝑔∗
(

𝑓∗(∇)(𝑔∗(𝜉𝑎)𝑔∗(𝜉𝑏))
)

The first equality follows from the definition of 𝑔∗(𝑓∗(∇)), the second
from Lemma 2 and the fact that 𝑔∗(ℎ𝑎𝑏) = ℎ𝑎𝑏. This means that if we
can show that 𝑓∗(∇)(𝑔∗(𝜉𝑎)) = 𝟎, then we have the desired result. We
urn to that now.

We have assumed that a curve is in 𝐶 if and only if its image under 𝑔
s. It follows from this that 𝑔−1◦𝛾 ′ is in 𝐶. This curve has tangent field
∗(𝜉𝑎) along its image 𝑔−1◦𝛾 ′[R]. Now there is a slight subtlety that
rises here: We need to verify that 𝑔∗(𝜉𝑎) – thought of as the tangent
ield to 𝑔−1◦𝛾 ′ extended to all of R4 using Lemma 3 – is the same as
∗(𝜉𝑎) — the pullback of the extension of 𝜉𝑎 from 𝛾 ′[R] to all of R4. In

order to do so, we have to show that the latter agrees with the former
on the image of 𝑔−1◦𝛾 ′ and that it is constant along spacelike curves.

he uniqueness clause from Lemma 3 will then imply that the two are
he same field.

First, let 𝛼 ∶ R4 → R be a smooth scalar field and 𝑠 ∈ R. Then we
compute the following.

𝑔∗(𝜉𝑎) ⋅ 𝛼||
|𝑔−1◦𝛾′(𝑠)

= 𝜉𝑎 ⋅ (𝛼◦𝑔−1)||
|𝛾′(𝑠)

= ⃖⃖⃗𝛾 ′𝛾′(𝑠) ⋅ (𝛼◦𝑔−1)

= 𝑑
𝑑𝑠

(𝛼◦𝑔−1◦𝛾 ′)(𝑠)

= ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗(𝑔−1◦𝛾 ′)𝑔−1◦𝛾′(𝑠) ⋅ 𝛼

he first equality follows from the definition of the pullback 𝑔∗, the
econd from the fact that 𝜉𝑎 is the tangent field to 𝛾 ′, and the third and
ourth from the definition of the tangent vector to a curve Malament
2012, p. 11). This means that the pullback 𝑔∗(𝜉𝑎) has the same action
n an arbitrary smooth scalar field as the tangent field to 𝑔−1◦𝛾 ′ does,
nd so the two are equal on the image of 𝑔−1◦𝛾 ′.

Second, we show that the pullback 𝑔∗(𝜉𝑎) is constant along spacelike
urves. Let 𝛽 be a spacelike curve with tangent field 𝜆𝑎. We need to
how that 𝜆𝑛∇𝑛𝑔∗(𝜉𝑎) = 𝟎. So we compute.

𝑛𝑔∗(∇𝑛𝜉
𝑎) = 𝜆𝑛𝑔∗(𝑔∗(∇𝑛)(𝜉𝑎)) = 𝜆𝑛𝑔∗(𝑔∗(∇𝑛𝑔

∗(𝜉𝑎))) = 𝜆𝑛∇𝑛𝑔
∗(𝜉𝑎) (9)

he first equality holds since 𝑔∗(∇) = ∇. The second follows by
nraveling the definition of 𝑔∗(∇), and the third from the fact that 𝑔∗◦𝑔∗
s the identity. We now note the following:

∗(𝜆𝑛𝑔∗(∇𝑛𝜉
𝑎)) = 𝑔∗(𝜆𝑛)∇𝑛𝜉

𝑎 = 𝟎

he first equality follows since 𝑔∗◦𝑔∗ is the identity. Since 𝑔 preserves
𝑎, it must be that 𝑔∗(𝜆𝑛) is spacelike, so since 𝜉𝑎 is constant along
pacelike curves (by Lemma 3), the second equality follows. Since 𝑔
s a diffeomorphism, 𝑔∗ is bijective, so it must be that 𝜆𝑛𝑔∗(∇𝑛𝜉𝑎) = 𝟎.
o Eq. (9) then implies that 𝑔∗(𝜉𝑎) is constant along 𝛽.

This means that we can treat 𝑔∗(𝜉𝑎) exactly like 𝜉𝑎 in the proof of
roposition 1. 𝑔∗(𝜉𝑎) is the extension (via Lemma 3) to all of R4 of
he tangent field of a curve in 𝐶, and in the proof of Proposition 1
𝑎 was one arbitrary such field. So as we did in Proposition 1 when we
omputed that 𝑓∗(∇𝑛)𝜉𝑎 = 𝟎, we here compute that 𝑓∗(∇𝑛)(𝑔∗(𝜉𝑎)) = 𝟎,
s desired. □

roposition 3. Let 𝛾 ′ ∶ R → R4 be a smooth curve with tangent field 𝜉𝑎

hat satisfies 𝑡𝑎𝜉𝑎 = 1. Then 𝜉𝑛𝑓∗(∇𝑛)𝜉𝑎 = 𝜉𝑛∇𝑛𝜉𝑎 + sin(𝑥1)
( 𝜕
𝜕𝑥2

)𝑎.

Proof. The proof is a simple computation, which has in effect already
been done during the proof of Proposition 1. One begins by computing
equation (7). Note that for that computation we only relied on the fact
that 𝑡𝑎𝜉𝑎 = 1, not on the assumption that 𝛾 ′ was in 𝐶, so it will go
through given our present assumptions as well. We restate the equation
here for convenience:

𝑓∗(∇𝑛)(𝜉𝑎) =
4
∑ 𝜕

𝑖
𝜉
1
𝑑𝑛𝑥

1( 𝜕
𝑖 )

𝑎 + sin(𝑥1)𝑑𝑛𝑥1(
𝜕
2
)𝑎 (7)
𝑖=1 𝜕𝑥 𝜕𝑥 𝜕𝑥
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We then compute the following, putting the pieces back together:

𝜉𝑛𝑓∗(∇𝑛)(𝜉𝑎) = 𝜉𝑛
4
∑

𝑖=1

𝜕
𝑖
𝜉

𝜕𝑥1
𝑑𝑛𝑥

1( 𝜕
𝜕𝑥𝑖

)𝑎 + 𝜉𝑛 sin(𝑥1)𝑑𝑛𝑥1(
𝜕
𝜕𝑥2

)𝑎

= 𝜉𝑛
4
∑

𝑖=1

4
∑

𝑗=1

𝜕
𝑖
𝜉

𝜕𝑥𝑗
𝑑𝑛𝑥

𝑗 ( 𝜕
𝜕𝑥𝑖

)𝑎 + sin(𝑥1)( 𝜕
𝜕𝑥2

)𝑎

= 𝜉𝑛
4
∑

𝑖=1
(∇𝑛

𝑖
𝜉)( 𝜕

𝜕𝑥𝑖
)𝑎 + sin(𝑥1)( 𝜕

𝜕𝑥2
)𝑎

= 𝜉𝑛∇𝑛

( 4
∑

𝑖=1

𝑖
𝜉( 𝜕
𝜕𝑥𝑖

)𝑎
)

+ sin(𝑥1)( 𝜕
𝜕𝑥2

)𝑎

= 𝜉𝑛∇𝑛𝜉
𝑎 + sin(𝑥1)

( 𝜕
𝜕𝑥2

)𝑎

The first equality follows from Eq. (7), while the second follows
from Eq. (6) and the fact that 𝑑𝑛𝑥1𝜉𝑛 = 1. The third and fourth equalities
follow from the definition of the coordinate derivative operator. The
last equality holds trivially by the way we have written 𝜉𝑎 in standard
coordinates. □
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